Return to search

IN UTERO GENE DELIVERY OF AAV VECTORS FOR EFFICIENT TREATMENT OF MUSCLE DISORDERS

Duchenne muscular dystrophy (DMD) is a devastating primary muscle disease with pathological changes in skeletal muscle that are ongoing at the time of birth. Progressive deterioration in striated muscle function in affected individuals ultimately results in early death due to cardio-pulmonary failure. Since affected individuals can be identified prior to birth by prenatal genetic testing for DMD, gene replacement treatment can be started in utero. This approach offers the possibility of preventing pathological changes in muscle that begin early in life.
Previous studies with systemic in utero adenoassociated viral (AAV) vector serotype 1 gene delivery to embryonic day 16 (E-16) pups resulted in high levels of transduction in diaphragm and intercostal muscles, but no detectable levels in limb muscle. Recently newer AAV serotypes such as AAV8 have demonstrated widespread and high transgene expression in skeletal muscles and diaphragm by systemic delivery in adults and neonatal mice. In this study I tested AAV8 vector gene delivery by intraperitoneal administration in E-16 mice in utero. Using an AAV8 vector carrying a lacZ transgene, I observed high level transduction of diaphragm and more moderate transduction of multiple limb muscles and heart. Encouraged with these results I tested in utero gene transfer in the mdx mouse model of DMD, a minidystrophin gene driven by the human cytomegalovirus promoter was delivered systemically by an intraperitoneal injection to the fetus at embryonic day 16. Treated mdx mice studied at 9 weeks after birth demonstrated widespread expression of recombinant dystrophin in skeletal muscle, restoration of the dystrophin associated glycoprotein complex in dystrophin-expressing muscle fibers, improved muscle pathology, and functional benefit to the transduced diaphragm compared to untreated littermate controls. In order to further extend these studies, AAV9 carrying a minidytsrophin gene was also tested. Robust expression in heart and muscles were seen at 4 weeks post treatment by in utero gene delivery. Furthermore robust heart expression persisted as long as 3 months post treatment. These results support the potential of AAV8 and AAV9 vectors to efficiently cross the blood vessel barrier to achieve systemic gene transfer to skeletal muscle in utero in a mouse model of muscular dystrophy, to significantly improve the dystrophic phenotype and to ameliorate the processes that lead to exhaustion of the skeletal muscle regenerative capacity.

Identiferoai:union.ndltd.org:PITT/oai:PITTETD:etd-05042010-161310
Date10 May 2010
CreatorsKoppanati, Bhanu Munil
ContributorsRichard J.Chaillet, Paul D.Robbins, Paula R. Clemens, Eleanor Feingold, Simon C. Watkins
PublisherUniversity of Pittsburgh
Source SetsUniversity of Pittsburgh
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.library.pitt.edu/ETD/available/etd-05042010-161310/
Rightsrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Pittsburgh or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0019 seconds