Propylene is the second most important starting chemical in the petrochemical industry after ethylene. Unlike ethylene, propylene readily undergoes substitution reactions including polymerisation, oxidation, halogenation, hydrohalogenation, alkylation, hydration, oligomerization and hydroformylation, which lead to a wide variety of important downstream products. One of the principal uses of propylene is to produce key chemicals from selective oxidation. In 2016, the world annual production of propylene is about 94 million tonnes, and the global proportion used to produce selective oxidation product is over 18%. They constitute a key part of the chemical industry and contribute towards substantial economic benefits. The application of Ag based heterogeneous catalysts to selective propylene oxidation is a key factor in the synthesis of nearly all downstream chemicals, however billions of pounds are lost every year due to unplanned reactor shutdown, safety control and environment unfriendly emission control as a results of inefficiency catalytic selectivity and activity. Despite, both theoretical and experimental research works have been intensively involved, the fundamental reason leading to these effects are not yet well understood. The work presented in this thesis explores a range of novel modification techniques that alter the activity of Ag nanocatalysts for selective propylene oxidation, especially in propylene epoxidation. Particular focus is placed on developing surface modified Ag catalysts through morphology control, surface architecture engineering with another sublayer metal. Using a combination of modelling, novel and traditional materials characterisation methods, it is found that these modification result in some significant electronic and/or geometric alterations to the Ag nanoparticles surface. The Ag-Ag bond distance can be dramatically enlarged by exposing a high-index Ag surface or a core-shell structure with monolayer Ag shell. When interacting with molecular oxygen, the molecular oxygen adsorption and dissociation behaviour is sensitive to the geometric changes in Ag surface. This leads to an enhanced selectivity toward propylene epoxidation than combustion resulting from preventing a C-H bond cleavage. Finally, be creating atomically dispersed Ag on zeolite, a completely different interaction between molecular oxygen and single atom Ag were discovered comparing to on a extensive silver surface. This leads to the observation of an excitingly new propylene oxidation reaction producing ethanol and CO<sub>2</sub> resulting from C=C bond cleavage. Overall, the research presented within this thesis demonstrated a number of methods for the intelligent design of novel heterogeneous Ag catalysts with remarkable activity and selectivity toward specific selective propylene oxidation. These modification methods are believed to be potentially applicable to a wide range of other catalytic reactions.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:757797 |
Date | January 2018 |
Creators | Yu, Bin |
Contributors | Tsang, Edman |
Publisher | University of Oxford |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://ora.ox.ac.uk/objects/uuid:0f3f0556-bff1-4af1-bfe0-0e62b0425bff |
Page generated in 0.0019 seconds