Return to search

Elucidating interactions between the dermal fibroblast phenotype, inflammatory signals and extra-cellular matrix components

The study of dermal wound healing has long been used to elucidate the cellular and molecular processes guiding the connective tissue response to injury. Of particular interest are the mechanisms by which soluble mediators, including inflammatory signals, guide fibroblast activity within the wound bed. This thesis addresses the role of prostaglandin E2 (PGE2) in the regulation of fibroblast activities relevant to restoration of tissue structure and function. Although PGE2 has been previously shown to play an important role in various wound healing steps, its precise contribution to the overall outcome of dermal repair is unclear. Using three well defined human dermal fibroblast phenotypes this study demonstrates that while PGE2 signaling during dermal repair triggers pro-inflammatory cascades, its effects on fibroblast activities are putatively anti-fibrotic. Specifically, exogenous PGE2 decreases the migratory and contractile potential of dermal fibroblasts through destabilization of the actin cytoskeleton and inhibits endogenous collagen synthesis. While PGE2 effects on fibroblast activity are largely conserved across phenotypes, fetal fibroblasts maintain a quantitatively diminished response to PGE2-induced alterations of cytoskeletal dynamics.
Upon further analysis, this effect was shown to be representative of a larger intrinsic fibroblast phenotype. Fetal dermal fibroblasts were shown to maintain elevated rates of migration and contraction, as part of a generalized hyperactive dynamic state. Surprisingly, this phenotype was found to be sufficiently robust so as to persist despite changes in substrate and environmental constraints. In light of this finding, one additional approach was used to ascertain the robustness of the fetal fibroblast. Transplantation of fetal dermal fibroblasts into an adult wound environment was used to assess whether the intrinsic fetal fibroblast phenotype can survive the multitude of events comprising adult wound healing. While results are preliminary, this approach does present a useful tool for future studies aimed at elucidating the precise fetal fibroblast phenotype and its contribution to overall wound healing response.

Identiferoai:union.ndltd.org:PITT/oai:PITTETD:etd-03092006-110541
Date27 April 2006
CreatorsSandulache, Vlad Constantin
ContributorsDavid J. Hackam, Stephen Strom, Alan H. Wells, Patricia A. Hebda, Satdarshan P.S. Monga
PublisherUniversity of Pittsburgh
Source SetsUniversity of Pittsburgh
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.library.pitt.edu/ETD/available/etd-03092006-110541/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Pittsburgh or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0023 seconds