Return to search

Kinetic and Structural Characterization of Isoenzyme-Selective Aldehyde Dehydrogenase 1A Inhibitors

Indiana University-Purdue University Indianapolis (IUPUI) / The human aldehyde dehydrogenase superfamily consists of 19 distinct genetic loci that play key roles in both health and disease. Aldehyde dehydrogenases are primarily involved in the metabolism of reactive aldehyde substrates; the ALDH1A subfamily, in particular, metabolizes retinaldehyde and is involved in a pathway regulating tissue differentiation, cell proliferation, and apoptosis. Recently, ALDH1 isoenzymes have been implicated as significant elements in cancer progression. ALDH1 activity has been used as a marker of cancer stem cells, a subpopulation of cancer stem cells with high drug resistance, proliferative potential, and ability to differentiate into multiple cell types. In accordance with this, ALDH1 activity and expression has been shown to correlate with lower survival, increased chemoresistance, and increased chance of relapse in multiple solid cancer types, including breast, ovarian, lung, and colorectal. Despite the clear relevance of ALDH1 enzymes in cancer, the specific roles of individual isoenzymes are unclear. Isoenzyme-selective small molecule modulators of the ALDH1A subfamily would allow the probing of the function of individual isoenzymes in healthy and disease states.
Two ALDH1A1 inhibitors, CM38 and C10, were previously identified in a high-throughput screen. In this study, CM38, an ALDH1A1-selective inhibitor, and CM10, an ALDH1A inhibitor, were characterized using kinetic assays, structural biology, and cell culture experiments. A structure-activity relationship was built for each series, and an X-ray crystallography structure was used to determine the binding mode. These approaches allowed the investigation of the ALDH1A active site and identification of structural features that can be used to design and improve selective modulators of this subfamily. CM38 and CM10 were also tested in a breast cancer cell line to determine their efficacy in a cellular environment. While the CM38 series showed warning signs of potential off-target toxicity, members of the CM10 compound series showed excellent initial characteristics as potential chemical tools. The results of this study may be useful in the design of new chemical tools to delineate the functions of individual ALDH1 isoenzymes in cancer biology, as well as in the development of drugs to selectively target cancer stem cells.

Identiferoai:union.ndltd.org:IUPUI/oai:scholarworks.iupui.edu:1805/11076
Date January 2016
CreatorsChtcherbinine, Mikhail
ContributorsHurley, Thomas D., Georgiadis, Millie M., Wells, Clark D.
Source SetsIndiana University-Purdue University Indianapolis
Languageen_US
Detected LanguageEnglish
TypeThesis
RightsAttribution-NonCommercial-NoDerivs 3.0 United States, http://creativecommons.org/licenses/by-nc-nd/3.0/us/

Page generated in 0.0022 seconds