Return to search

Role of iron regulatory proteins in the regulation of iron metabolism by nitric oxide / Rôle des iron Regulatory Proteins dans la régulation du métabolisme cellulaire du fer par le monoxyde d'azote / Rola irps (iron regulatory proteins)wregulacji metabolizmu żelaza przez tlenek azotu (no)

Les Iron Regulatory Proteins 1 (IRP1/2) sont des protéines cytosoliques qui contrôlent l’homéostasie du fer chez les mammifères. Elles régulent la concentration de fer intracellulaire au niveau post-transcriptionnel, en interagissant spécifiquement avec des motifs appelés iron responsive élément (IREs). Ces motifs sont localisés dans les régions non traduites des ARNm codant notamment pour la ferritine (Ft), la ferroportine (Fpn) et le récepteur de la transferrine (TfR1). L’IRP1 est une protéine bifonctionnelle, majoritairement exprimée sous une forme contenant un centre [4Fe-4S] qui présente une activité aconitase. Les deux activités de l’IRP1 (aconitase/trans-régulateur) s’excluent mutuellement par la présence ou non du centre Fe-S. L’IRP2 est exprimée constitutivement sous une forme liant les IREs. Le monoxyde d’azote (NO), une importante molécule de signalisation impliquée dans les défenses immunitaires, cible le centre Fe-S de l’IRP1 et permet la conversion de l’IRP1 de sa forme aconitase vers sa forme liant les séquences IREs. Il a également été rapporté que l’IRP2 détecterait NO, cependant la fonction intrinsèque de l’IRP1 et de l’IRP2 dans le contrôle du métabolisme du fer intracellulaire en réponse à NO reste à ce jour non élucidée. Dans cette étude, nous avons identifié le régulateur principal du métabolisme du fer intracellulaire en réponse à NO, en utilisant des modèles de souris déficients pour les gènes IRP1 et/ou IRP2 et testé la contribution de la tension en oxygène dans cette régulation. Ainsi, nous avons exposé des macrophages primaires issus de la moelle osseuse de souris Irp1-/-, Irp2-/- et de souris Irp1-/- Irp2-/- de la lignée macrophagique à une source de NO, sous différentes tensions en oxygène. Les activités IRPs, l’expression des gènes Ft, Fpn et TfR1 ainsi que l’activité d’une protéine à centre Fe-S (l’aconitase mitochondriale) ont été mesurées après fractionnement cellulaire. Nous avons montré qu’en normoxie, la conversion de l’aconitase cytosolique en apo-IRP1 par NO est entièrement responsable de la régulation post-transcriptionnelle des ferritines (L-Ft et H-Ft), de la Fpn et du TfR1. En augmentant le transport du fer intracellulaire et en diminuant le stockage et l’export, l’activation de l’IRP1 par NO servirait à maintenir des taux de fer intracellulaire suffisants pour alimenter la biogenèse des centres Fe-S après l’arrêt des flux de NO. En effet, nous observons une restauration efficace de l’activité de l’aconitase mitochondriale dans les macrophages de souris sauvage alors qu’elle est bloquée dans les macrophages de souris Irp1-/-. De plus, l’IRP1 activée par NO, permet également de diminuer les taux de L- et H-Ft, anormalement élevée dans les macrophages de souris Irp2-/-. Nous montrons que le NO endogène active l’IRP1 sous sa forme trans-régulatrice alors qu’il tend à diminuer l’activité de l’IRP2. Néanmoins, l’IRP1 reste le régulateur principal des ferritines en conditions de normoxie. En condition hypoxique, les deux IRPs semble coopérer pour inhiber la traduction des ferritines car dans les macrophages Irp1-/-exposés à NO, l’IRP2 stabilisée est suffisante pour inhiber la traduction de la L- et H-Ft et ceci malgré l’activation transcriptionnelle des gènes de la L- et H-Ft. Concernant la régulation du TfR1 par NO et en hypoxie, TfR1 est principalement régulé par une voie transcriptionnelle dominant largement la voie post-transcriptionnelle impliquant l’IRP1. Le facteur de transcription HIF-1 alpha pourrait être le régulateur critique dans cette régulation. En conclusion, nous montrons dans cette étude, comment le regulon IRP participe à la régulation du métabolisme du fer intracellulaire en réponse à NO et son étroite connexion avec la concentration en oxygène. Nos résultats soulignent l’importance d’explorer davantage le rôle de l’IRP1 dans des situations inflammatoires in vivo, où les tissus peuvent être exposé à un microenvironnement non hypoxique. / Iron Regulatory Protein 1 (IRP1) and 2 (IRP2) are two cytosolic regulators of mammalian cellular iron homeostasis. IRPs post-transcriptionally modulate expression of iron-related genes by binding to specific sequences, called Iron Regulatory Elements (IREs), located in the untranslated regions (UTR) of mRNAs. Either of the two IRPs inhibits translation when bound to the single 5’UTR IRE in the mRNA encoding proteins of iron export (ferroportin - Fpn) and storage (ferritin - Ft) or prevents mRNA degradationwhen bound to the multiple IREs within the 3’UTR of the mRNA encoding the transferrinreceptor 1 (TfR1) - iron uptake molecule. The IRE-binding activity of both IRPs respondsto cellular iron levels, albeit via distinct mechanisms. IRP1 is a bifunctional protein, whichmostly exists in its non IRE-binding, [4Fe-4S] aconitase form and can be regulated by apost-translational incorporation or removal of the Fe-S cluster. In contrast to IRP1, IRP2 isnot able to ligate an Fe-S cluster, and its IRE-binding activity is determined by the rate ofits proteasomal degradation. Although both IRP1 and IRP2 can regulate cellular ironhomeostasis, only mice lacking IRP2 were shown to display iron mismanagement in mosttissues. This could be explained by the fact that IRP1 exists mostly in its non IRE−binding,aconitase form under physiological oxygen conditions (3-6%). Interestingly, nitric oxide(NO), an important signalling molecule involved in immune defence, targets the Fe-Scluster of IRP1 in both normoxia and hypoxia, and converts IRP1 from aconitase to anIRE-binding form. It has also been reported that IRP2 could sense NO, but the intrinsicfunction of IRP1 and IRP2 in NO−mediated regulation of cellular iron metabolism hasremained a matter of controversy. In this study, we took advantage of mouse models ofIRP deficiency to define the respective role of IRP1 and IRP2 in the regulation of cellulariron metabolism by NO and assess the contribution of oxygen tension on the regulation.Therefore, we exposed bone marrow-derived macrophages (BMMs) from Irp1-/-, Irp2-/- andmacrophage specific double knockout mosaic mice (Irp1/2-/-) to exogenous andendogenous NO under different oxygen conditions (21% O2 for normoxia and 3-5% forhypoxia experiments) and measured IRPs activities, iron-related genes expression andactivity of Fe-S cluster protein – mitochondrial aconitase. We showed that in normoxia, thegenerated apo-form of IRP1 by NO was entirely responsible for the post-transcriptionalregulation of TfR1, H-Ft, L-Ft and Fpn. Moreover, by increasing iron uptake and reducingiron sequestration and export, NO−dependent IRP1 activation served to maintainadequate levels of intracellular iron in order to fuel the Fe−S biosynthetic pathway, asdemonstrated by the efficient restoration of the mitochondrial Fe−S aconitase, which wasprevented under IRP1 deficiency. Furthermore, activated IRP1 was potent enough todown-regulate the abnormally increased L-Ft and H-Ft protein levels in Irp2-/-macrophages. Endogenous NO activated IRP1 IRE-binding activity and tended todecrease IRP2 IRE-binding activity. Nevertheless, IRP1 was the predominant regulator offerritin in those conditions. In hypoxia, in Irp1+/+ and Irp2+/+ macrophages exposed to NO,both stabilized IRP2 and NO-activated IRP1 seemed to cooperate to inhibit ferritinsynthesis. However, in Irp1-/- cells, IRP2 stabilized in hypoxia was sufficient to inhibit LandH-Ft synthesis despite the concomitant increase of corresponding mRNAs.Interestingly, TfR1 was shown to be predominantly regulated at the transcriptional level byNO in hypoxia, in which HIF-1 alpha may be the critical regulator. In conclusion, we revealin this study how the IRP regulon participates in the regulation of cellular iron metabolismin response to NO and its intimate interplay with the oxygen pathway. The findingsunderlie the importance to further explore the role of IRP1 in inflammation in vivo, in nonhypoxictissue microenvironments.

Identiferoai:union.ndltd.org:theses.fr/2011PA11T056
Date25 October 2011
CreatorsStys, Agnieska
ContributorsParis 11, Polish Academy of Sciences, Institute of Genetics and Animal Breeding, Bouton, Cécile, Lipinski, Pawel
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text, Image

Page generated in 0.0023 seconds