Return to search

Sekvenční metody Monte Carlo / Sekvenční metody Monte Carlo

Title: Sequential Monte Carlo Methods Author: David Coufal Department: Department of Probability and Mathematical Statistics Supervisor: prof. RNDr. Viktor Beneš, DrSc. Abstract: The thesis summarizes theoretical foundations of sequential Monte Carlo methods with a focus on the application in the area of particle filters; and basic results from the theory of nonparametric kernel density estimation. The summary creates the basis for investigation of application of kernel meth- ods for approximation of densities of distributions generated by particle filters. The main results of the work are the proof of convergence of kernel estimates to related theoretical densities and the specification of the development of approx- imation error with respect to time evolution of a filter. The work is completed by an experimental part demonstrating the work of presented algorithms by simulations in the MATLABR⃝ computational environment. Keywords: sequential Monte Carlo methods, particle filters, nonparametric kernel estimates

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:324557
Date January 2013
CreatorsCoufal, David
ContributorsBeneš, Viktor, Prokešová, Michaela
Source SetsCzech ETDs
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/masterThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0149 seconds