The purpose of this research is to evaluate certain performance characteristics of a morphing<br />wing system that uses Macro Fiber Composites (MFC) to create camber change. This<br />thesis can be broken into two major sections. The first half compares a few current MFC<br />airfoil designs to each other and to a conventional servomechanism (servo) airfoil. Their<br />performance was measured in terms of lift and drag in a 2-D wind tunnel. The results<br />showed MFC airfoils were effective but limited by aeroelasticity compared to the servo. In<br />addition, a morphed airfoil and a flapped airfoil were rapid prototyped and tested to isolate<br />the effects of discontinuity. The continuous morphed airfoil produced more lift with less<br />drag.<br />The second half of this thesis work focused on determining the ideal MFC configurations for<br />a thin wing application. Simulations were run on a thin wing with embedded MFCs such<br />that the whole wing morphed. Finite element and vortex lattice models were used to predict<br />deflections and rolling moment coefficients. Different configuration parameters were then<br />varied to quantify their effect. The comparisons included MFC location, number of MFCs,<br />material substrate, and wing thickness. A prototype wing was then built and flight tested.<br />While the simulations overestimated the wing deflection, the flight results illustrated the<br />complexity and variability associated with the MFC morphing system. The rolling moment<br />coefficients from flight were consistent with the simulation given the differences in deflection. / Master of Science
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/19190 |
Date | 06 November 2012 |
Creators | Probst, Troy Anthony |
Contributors | Mechanical Engineering, Kochersberger, Kevin B., Case, Scott W., Tarazaga, Pablo Alberto |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | ETD, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0021 seconds