This thesis presents results of the application of energy-based large-scale optimization of a two-subsystem (propulsion subsystem (PS) and airframe subsystem-aerodynamics (AFS-A)) air-to-air fighter (AAF) with two types of AFS-A models: a fixed-wing AFS-A and a morphing-wing AFS-A. The AAF flies 19 mission segments of a supersonic fighter aircraft mission and the results of the study show that for very large structural weight penalties and fuel penalties applied to account for the morphing technology, the morphing-wing aircraft can significantly outperform a fixed-wing AAF counterpart in terms of fuel burned over the mission. The optimization drives the fixed-wing AAF wing-geometry design to be at its best flying the supersonic mission segment, while the morphing-wing AFS-A wing design is able to effectively adapt to different flight conditions, cruising at subsonic speeds much more efficiently than the fixed-wing AAF and, thus yielding significant fuel savings.
Also presented in this thesis are partially optimized results of the application of a decomposition strategy for large-scale optimization applied to a nine-subsystem AAF consisting of a morphing-wing AFS-A, turbofan propulsion subsystem (PS), environmental controls subsystem (ECS), fuel loop subsystem (FLS), vapor compression/polyalphaolefin loop subsystem (VC/PAOS), electrical subsystem (ES), central hydraulics subsystem (CHS), oil loop subsystem (OLS), and flight controls subsystem (FCS). The decomposition strategy called Iterative Local-Global Optimization (ILGO) is incorporated into a new engineering aircraft simulation and optimization software called iSCRIPTâ„¢ which also incorporates the models developed as part of this thesis work for the nine-subsystem AAF. The AAF flies 21 mission segments of a supersonic fighter aircraft mission with a payload drop simulating a combat situation. The partially optimized results are extrapolated to a synthesis/design which is believed to be close to the system-level optimum using previously published results of the application of ILGO to a five-subsystem AAF to which the partially optimized results of the nine-subsystem AAF compare relatively well.
In addition to the optimization results, a parametric study of the morphing AFS-A geometry is conducted. Three mission segments are studied: subsonic climb, subsonic cruise, and supersonic cruise. Four wing geometry parameters are studied: leading-edge wing sweep angle, wing aspect ratio, wing thickness-to-chord ratio, and wing taper ratio. The partially optimized AAF is used as the baseline, and the values for these geometric parameters are increased or decreased up to 20% relative to an established baseline to see the effect, if any, on AAF fuel consumption for these mission segments. The only significant effects seen in any of the mission segments arise from changes in the leading-edge sweep angle and wing aspect ratio. The wing thickness-to-chord ratio shows some effect during the subsonic climb segment, but otherwise shows no effect along with the taper ratio in any of the three mission segments studied. It should be emphasized, however, that these changes are made about a point (i.e. synthesis/design), which is already optimal or nearly so. Thus, the conclusions drawn cannot be generalized to syntheses/designs, which may be far from optimal. Also note that the results upon which these conclusions are based may very likely highlight a weakness in the conceptual-level drag-buildup method used in this thesis work. Further optimization studies using this drag-buildup method may warrant setting the thickness-to-chord ratios and taper ratios rather than having them participate in the optimization as degrees of freedom (DOF).
The final set of results is a parametric study conducted to highlight the correlation between the fuel consumption and the total exergy destruction in the AFS-A. The results for the subsonic cruise and supersonic cruise mission segments show that at least for the case when the AFS-A is optimized by itself for a fixed specific fuel consumption that there is a direct correlation between the fuel burned and total exergy destruction. However, as shown in earlier work where a three-subsystem AAF with AFS-A, PS, and ECS is optimized, this may not always be the case. Furthermore, based on the results presented in this thesis, there is a smoothing effect observed in the exergy response curves compared to the fuel-burned response curves to changes in AFS-A geometry. This indicates that the exergy destruction is slightly less sensitive to such changes. / Master of Science
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/32821 |
Date | 12 June 2009 |
Creators | Smith, Kenneth Wayne |
Contributors | Mechanical Engineering, von Spakovsky, Michael R., O'Brien, Walter F. Jr., Philen, Michael K., Moorhouse, David |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Relation | KWS_thesis.pdf |
Page generated in 0.0026 seconds