We propose two different methods for image segmentation with the objective of marking contaminated regions in images from biochemical tests. The contaminated regions consists of thin hair or fibers and the purpose of this thesis is to eliminate the tedious task of masking the contaminated regions by hand by implementing automatic hair masking. Initially an algorithm based on Morphological Image Processing is presented, followed by solving the problem of pixelwise classification using a Convolutional Neural Network (CNN). Finally, the performance of each implementation is measured by comparing the segmented images with labelled images which are considered to be the ground truth. The result shows that both implementations have strong potential at successfully performing semantic segmentation on the images from the biochemical tests.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-254258 |
Date | January 2019 |
Creators | Vestergren, Sara, Zandpour, Navid |
Publisher | KTH, Skolan för elektroteknik och datavetenskap (EECS) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-EECS-EX ; 2019:142 |
Page generated in 0.0016 seconds