A teleoperated system of dual redundant manipulator will be controlled in this thesis. The robot used with the dual redundant manipulator in this thesis is Baxter. Baxter’s redundant robot arms are 7-degree-of-freedom arms. The problem that will be solved in this thesis is optimization of the 7-degree-of-freedom robot arms. The control algorithm of the 7-degree-of-freedom robot arms will be discussed and built. A simulation program will be built to test the control algorithm. Based on the control algorithm, a teleoperation system will be created for Baxter. The controller used is Omni, which is a six-joint haptic device. Omni will also be used to give force feedback upon collision while the user is controlling the robot. Hence, a collision force feedback system is going to be created and combined with the teleoperation system. The teleoperation system will be tested in common daily applications.
Identifer | oai:union.ndltd.org:USF/oai:scholarcommons.usf.edu:etd-6991 |
Date | 16 September 2015 |
Creators | Wang, Yu-Cheng |
Publisher | Scholar Commons |
Source Sets | University of South Flordia |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Graduate Theses and Dissertations |
Rights | default |
Page generated in 0.0016 seconds