Return to search

Effects of Pharmacological De-prenylation of Rhes on Motor Behavior in a Beta-Nitropropionic Acid Animal Model of Huntington's Disease

Huntington’s disease (HD) is a heritable, neurodegenerative disorder characterized by motor, cognitive, and psychiatric disturbances. The progressive disease is caused by an unstable CAG expansion within the gene that normally encodes for the huntingtin protein (Htt). The expanded mutant form of Htt (mHtt) is expressed ubiquitously throughout patients’ bodies; however, neuronal degeneration is prominent only in the corpus striatum and, to a lesser extent, the cortex. The Ras homolog Rhes is also preferentially localized to the striatum. The putative co-factor Rhes has been shown to act with mHtt to cause neuronal death. Simvastatin, a lipid lowering drug, and zoledronate, a nitrogen bisphosphonate, act on the mevalonate pathway, which gives both Rhes and its target cells, binding sites. The current study aimed to interrupt the mevalonate pathway and inactivate, via de-prenylation, Rhes in CD-1 mice exposed to 3-nitroproprionic acid, a neurotoxin that mimics HD mitochondrial dysfunction and striatal degeneration. Results suggest that drug treatment does not rescue motor impairments and may potentiate 3-NP damage. The persistent motor deficits are discussed in relation to possible Rhes de-prenylation.

Identiferoai:union.ndltd.org:uno.edu/oai:scholarworks.uno.edu:td-3201
Date18 December 2015
CreatorsWhitmarsh, Ashley
PublisherScholarWorks@UNO
Source SetsUniversity of New Orleans
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceUniversity of New Orleans Theses and Dissertations

Page generated in 0.0024 seconds