Return to search

Finite element analysis of aircraft tyres

In this thesis, the Finite Element (FE) Analysis of aircraft tyres is presented. The modelling and simulations of detailed construction of tyre enable tyre manufacturers to evaluate new designs and development before a prototype is fabricated, and aim to reduce the research costs and efforts to optimise the current tyre design of tyres. The material properties is key in the FE modelling and analysis, a number of sample from the rubber compounds and reinforcement were used to characterise the elastic, hyperelastic and viscoelastic behaviour of material. In this research, two aircraft tyres were employed for correlation study to a number of design checks and standard tests such as profile growth, sidewall deformation, footprint, contact pressure, and load-deformation data. The burst simulation was carried out to investigate when and where the failure in tyre occurs and compares it with what happens in real-world burst test as an important procedure in tyre safety certification by aviation authorities. As a result, the virtual testing would shorten the design procedure by checking the design parameters in advance of tyre prototyping. Moreover, the FE parameters such as mesh size and tyre geometry are investigated for optimisation of the runtime and accuracy and improvements in the FE results. A number of simulations were run to determine generated forces and moments across the contact patch using a steady-state approach in presence of air as the tyre inflator to obtain a higher accuracy in prediction of the vertical stiffness and footprint area. In addition, the tyre was freely rolled on the runway using an explicit approach to investigate the energy dissipation and heat build-up per tyre rotation due to the tyre viscoelasticity. Finally, TAIS (Tyre Analysis Interface System) development is explained in response to the design requirements from Dunlop Aircraft Tyres.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:629706
Date January 2014
CreatorsBehroozi, Mohammad H.
PublisherUniversity of Birmingham
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://etheses.bham.ac.uk//id/eprint/5390/

Page generated in 0.0158 seconds