Careful feature engineering is an important factor of artificial intelligence for games. In this thesis I investigate the benefit of delegating the engineering efforts to the model rather than the features, using the board game Othello as a case study. Convolutional neural networks of varying depths are trained to play in a human-like manner by learning to predict actions from tournaments. My main result is that using a raw board state representation, a network can be trained to achieve 57.4% prediction accuracy on a test set, surpassing previous state-of-the-art in this task. The accuracy is increased to 58.3% by adding several common handcrafted features as input to the network but at the cost of more than half again as much the computation time. / Noggrann funktionsteknik är en viktig faktor för artificiell intelligens för spel. I dennaavhandling undersöker jag fördelarna med att delegera teknikarbetet till modellen i ställetför de funktioner, som använder brädspelet Othello som en fallstudie. Konvolutionellaneurala nätverk av varierande djup är utbildade att spela på ett mänskligt sätt genom attlära sig att förutsäga handlingar från turneringar. Mitt främsta resultat är att ett nätverkkan utbildas för att uppnå 57,4% prediktionsnoggrannhet på en testuppsättning, vilketöverträffar tidigare toppmoderna i den här uppgiften. Noggrannheten ökar till 58.3% genomatt lägga till flera vanliga handgjorda funktioner som inmatning till nätverket, tillkostnaden för mer än hälften så mycket beräknatid.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-210914 |
Date | January 2017 |
Creators | Hlynur Davíð, Hlynsson |
Publisher | KTH, Robotik, perception och lärande, RPL |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0019 seconds