The past few years have seen advances in modelling of polycrystalline materi- als using parametric tessellation models from stochastic geometry. A promising class of tessellations, the Gibbs-type tessellation, allows the user to specify a great variety of properties through the energy function. This text focuses solely on tetrahedrizations, a three-dimensional tessellation composed of tetrahedra. The existing results for two-dimensional Delaunay triangulations are extended to the case of three-dimensional Laguerre tetrahedrization. We provide a proof of existence, a C++ implementation of the MCMC simulation and estimation of the models parameters through maximum pseudolikelihood. 1
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:393507 |
Date | January 2019 |
Creators | Jahn, Daniel |
Contributors | Beneš, Viktor, Rataj, Jan |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0015 seconds