Les processus moléculaires mis en jeu lors de maladies de surcharge lysosomale (MSL) et qui conduisent à des dysfonctions neuronales sont peu connus. Afin de mieux comprendre comment s’opèrent ces dysfonctions neuronales associées à la mucopolysaccharidose de type VII (MPS VII), une MSL causée par la déficience en l’activité enzymatique de la ß-glucuronidase, nous avons généré des neurones humains MPS VII à partir cellules souches pluripotentes induites (iPSC). Grâce à la reprogrammation des fibroblastes de patients MPS VII, nous avons généré et caractérisé des neuroprécurseurs dérivés d’iPSC (NSC) et des neurones. Les iPSC MPS VII ont été positives pour les tests de pluripotence (activité de la phosphatase alcaline, expression des marqueurs de pluripotence SSEA3, TRA-2-49 et Nanog par immunofluorescence et expression des gènes de pluripotence SOX2, Oct4 et Lin28 par qRT-PCR, formation des corps embryonnaires et génération de cellules dérivées des trois feuillets embryonnaires in vivo par la formation de tératomes) et présentaient un caryotype normal. Les NSC dérivés d’iPSC exprimaient les marqueurs Nestin et SOX2, et ont été utilisés pour générer des neurones. Les neurones MPS VII exprimaient des marqueurs neuronaux comme MAP2, formaient des synapses et présentaient une activité calcium-dépendante.Afin d’identifier les dysfonctions moléculaires présentes dans la MPS VII, nous avons comparé les NSC et les neurones, avec ou sans milieu conditionné contenant l’enzyme recombinante humaine de la ß-glucuronidase (rhGUS), enzyme actuellement utilisée en phase 1/2, de chez Ultragenyx. Cette enzyme est internalisée par les cellules, rejoint leurs lysosomes et corrige les dysfonctions lysosomales de la MPS VII, restaurant ainsi un phénotype cellulaire physiologique (phénomène aussi appelé ‘enzyme replacement therapy’ (ERT)). Ces diverses conditions nous permettent d’éviter la variabilité clonale des iPSC, et de mieux identifier les déficiences neuronales, corrigées par l’ERT, qui sont associées à la MPS VII. / The molecular pathways linking lysosomal storage diseases (LSD) to neuronal dysfunction are poorly understood. To better understand neuronal dysfunction associated with mucopolysaccharidosis type VII (MPS VII), a LSD due to deficiency in ß-glucuronidase activity, we generated human MPS VII neurons from induced pluripotent stem cells (iPSC). Starting from MPS VII patient fibroblasts, iPSC-derived neural stem cells (NSC) and neurons were generated and characterized. MPS VII iPSC were positive for pluripotency tests (alkaline phosphatase activity, expression of pluripotency markers SSEA3, TRA-2-49 and Nanog by immunostaining and pluripotency gene SOX2, Oct4 and Lin28 expression by qRT-PCR, embryonic bodies formation and generation of cells derivated from the three germ layers in vivo by teratoma formation) and had a normal karyotype. IPSC-derived NSC expressed the markers Nestin and SOX2, and were used to generate neurons. MPS VII neurons expressed mature neuronal markers as MAP2, formed synapses and displayed a calcium-dependent activity. To identify molecular defects in MPS VII, we compared NSC and neurons, with or without conditioned medium containing a recombinant human ß-glucuronidase (rhGUS), enzyme currently used in phase 1/2, from Ultragenyx. This enzyme is taken up by cells, reaches their lysosoms and corrects MPS VII lysosoms dysfunctions, restoring cells to healthy phenotype (phenomena also called enzyme replacement therapy (ERT)). Our assays allow us to circumvent clonal variability associated with iPSC, and to better identify neuronal defects, corrected by ERT, which are associated with MPS VII disease.
Identifer | oai:union.ndltd.org:theses.fr/2015MONTT009 |
Date | 15 December 2015 |
Creators | Creyssels, Sophie |
Contributors | Montpellier, Kremer, Éric Joseph |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0016 seconds