Return to search

Diagnóza Parkinsonovy choroby z řečového signálu / Parkinson disease diagnosis using speech signal analysis

The thesis deals with the recognition of Parkinson's disease from the speech signal. The first part refers to the principles of speech signals and speech signals by patients suffering from Parkinson's disease. Further, it continues to describe the issues of speech signals processing, basic symptoms used for diagnosis of Parkinson's disease (e. g. VAI, VSA, FCR, VOT etc.) and reduction of these symptoms. The next part focuses on a block diagram of the program for the diagnosis of Parkinson's disease. The main objective of this thesis is comparison of two methods of feature selection (mRMR and SFFS). For classification have selected two different methods were used. The first method is classification kNN and second method of classification is Gaussian mixture model (GMM).

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:218976
Date January 2011
CreatorsKarásek, Michal
ContributorsSmékal, Zdeněk, Mekyska, Jiří
PublisherVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií
Source SetsCzech ETDs
LanguageCzech
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/masterThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0018 seconds