Return to search

Polymer microarrays for biomedical applications

Biocompatible polymers are used exhaustively within the biomedical arena, demonstrating a mechanical and chemical diversity that few other materials possess. As polymer technologies evolves to cater for new medical demands, even the most niche biomedical application becomes an achievable reality. However, the discovery of new polymers is hindered by the complexity and intricacy in which the biological milieu interacts with a new substrate, reducing the ability to predict the appropriateness of a certain polymer for a specific application. This drawback can be countered by the high-throughput evaluation of large numbers of chemically diverse polymer candidates. In this thesis, the use of polymer microarrays is invoked to address two separate medically-relevant issues: the control of inflammation, and the improvement of cancer screening. In addition, I provide details of how polymer microarray techniques and technology can be employed to expand the repertoire of biomaterials research. Mitochondrial DNA (mtDNA) is an alarm molecule that contributes to the cytokine storm observed during severe tissue injury. An application where control of this systemic inflammation is achieved through scavenging of mtDNA by a polymer was proposed. Primary screening highlighted that 166 out of the 380 polymers evaluated bound to blood cells, making them unsuitable for a blood-based application. The remaining 214 blood-compatible polymers were cross-examined for mtDNA binding. Through polymer microarray and subsequent scale-up of promising candidates, a poly(methoxyethyl methacrylate-co-di(ethylamino)ethyl acrylate-co-methoxyethyl acrylate) was found to have a remarkable ability to scavenge mtDNA. Removal of cell-free mtDNA using this polymer is proposed to remove a key trigger of systemic inflammation. Cervical cancer screening includes the cytological evaluation of patient material for developed or developing abnormalities. An application was sought that would enrich for cancerous/pre-cancerous cells and improve upon current standards for detection. Four cancerous cervical cell lines (HeLa, CaSki, SiHa, and C33a) and four precancerous cell lines (W12E, W12G, W12GPX, and W12GPXY) were interrogated to identify polymers with consistent binding that may improve routine cytological evaluation. A short-list of 24 polymers was assembled, and cells from liquid based cytology samples from healthy patient were spiked with DiI-labelled cancerous/precancerous cells and the short-listed polymers were re-evaluated for preferential binding. An enrichment of abnormal cervical cells was observed with three polymers, which could form the foundation for improved screening resources. Inkjet printing can be a useful tool in developing patterned substrates, such as polymer microarrays. A piezoelectric drop-on-demand printer was used to explore the methods in which these can be fabricated. A wettability assay using picolitre volumes was developed and used to characterise O2 plasma treatment of glass slides. Additionally, the printing of a cell-binding polymer using this approach enabled the decoration of cells with precise spatial resolution.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:738949
Date January 2017
CreatorsSimmonte Owens, Matthew John
ContributorsBradley, Mark ; Campopiano, Dominic
PublisherUniversity of Edinburgh
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/1842/28953

Page generated in 0.002 seconds