Return to search

An?lise da variabilidade da precipita??o sobre o Brasil tropical via um ?ndice intrassazonal multivariado / Precipitation variability analysis on Brazil tropical by intraseasonal multivariate index

Submitted by Automa??o e Estat?stica (sst@bczm.ufrn.br) on 2016-05-04T00:12:48Z
No. of bitstreams: 1
NaurineteDeJesusDaCostaBarreto_TESE.pdf: 20476602 bytes, checksum: ddf29db5dc57738de84c8009f0e93e2b (MD5) / Approved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2016-05-06T19:50:50Z (GMT) No. of bitstreams: 1
NaurineteDeJesusDaCostaBarreto_TESE.pdf: 20476602 bytes, checksum: ddf29db5dc57738de84c8009f0e93e2b (MD5) / Made available in DSpace on 2016-05-06T19:50:50Z (GMT). No. of bitstreams: 1
NaurineteDeJesusDaCostaBarreto_TESE.pdf: 20476602 bytes, checksum: ddf29db5dc57738de84c8009f0e93e2b (MD5)
Previous issue date: 2015-02-06 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior (CAPES) / A variabilidade intrassazonal ? uma importante componente do sistema clim?tico da Terra, apresenta intera??o com diversos fen?menos meteorol?gicos, sendo um elo entre os sistemas de tempo e clima, tornando-se uma ferramenta essencial para previs?o e proje??o do clima. O objetivo principal deste trabalho ? avaliar o comportamento intrassazonal da precipita??o sobre o Brasil Tropical e poss?veis altera??es ocasionadas nos cen?rios de simula??o clim?tica: ?Historical? que representa o clima atual (1979 -2005) e ?RCP8.5? representando as proje??es de mudan?as clim?ticas com o aumento da for?ante radioativa da atmosf?rica em 8,5 W/m? para o per?odo de 2070 at? 2100. Entre os resultados obtidos est?o: na primeira etapa ? elabora??o de um ?ndice multivariado intrassazonal para o Brasil Tropical, por meio da aplica??o da an?lise de m?xima covari?ncia, associada ? proje??o dos modos dominantes em eixos ortogonais. Desta forma ? poss?vel caracterizar os padr?es resultantes em oitos fases, cujas composi??es representam a evolu??o da intrassazonalidade sobre a regi?o de estudo. Na segunda Etapa foi realizada uma avalia??o da sensibilidade dos modelos do ?Coupled Model Intercomparison Project Phase 5?(CMIP5) ? variabilidade semanal de precipita??o durante os meses de ver?o e outono austal, dos dezesseis modelos avaliados, observou-se que apenas seis foram capazes de representar de forma significativa o padr?o de precipita??o, e dentre estes o modelo MRI-CGCM3 foi o que obteve o melhor resultado. A terceira e ultima etapa consistiu na aplica??o da metodologia empregada na etapa 1 no modelo que melhor representou o padr?o de precipita??o, encontrado na Etapa 2, ou seja no MRI-CGCM3, num contexto geral notou-se que este modelo ? capaz de representar bem o padr?o de variabilidade espacial e ciclo evolutivo, entretanto do ponto de vista regional, ainda h? necessidade de melhorias na representatividade dos sistemas. / The intraseasonal variability is an important component of Earth?s climate system, shows interaction with various meteorological phenomena, being a link between weather and climate systems, making it an essential tool for forecasting and climate projection. The aim of this study is to evaluate the behavior of intraseasonal precipitation over Brazil Tropical and possible changes caused in climate simulation scenarios, Historical that represents the current climate (1979 -2005) and Representative Concentration Pathways (RCP8.5) representing projections of climate change with increasing radioactive forcing of air at 8.5W/m2 for the period 2070 to 2100. Among the results are: the ?rst step to the establishment of a intraseasonal multivariate index for Brazil Tropical, by applying the maximum covariance analysis, associated with the projection ofthedominantmodesinorthogonalaxes.Thusitispossibletocharacterizetheresulting patterns in eight phases, whose compositions represent the evolution of intrassazonalidade on the study region. In the second step was carried out an assessment of the sensitivity of the models Coupled Model Intercomparison Project Phase 5 (CMIP5) theweeklyvariabilityofrainfallduringthemonthsofsummerandfallAustal,thesixteen models evaluated, it was observed that only six were able to represent signi?cantly the pattern of rainfall, and of these MRI-CGCM3 model was the one that obtained the best result. The third and ?nal step was the application of the methodology used in step 1 in the model that best represented the rainfall pattern, found in Step 2, ie in MRI-CGCM3 in a general context it was noted that this model is able to represent well the pattern of spatial variability and evolutionary cycle, however the regional point of view, there is still need for improvement in the representation of systems.

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.ufrn.br:123456789/20409
Date06 February 2015
CreatorsBarreto, Naurinete de Jesus da Costa
Contributors43298990272, http://lattes.cnpq.br/4411895644401494, Souza, Everaldo Barreiros de, 33422990291, http://lattes.cnpq.br/6257794694839685, Alves, Jos? Maria Brabo, 15422941268, http://lattes.cnpq.br/6089287551555329, Spyrides, Maria Helena Constantino, 79203183434, http://lattes.cnpq.br/5023632543506327, L?cio, Paulo S?rgio, Mendes, David
PublisherUniversidade Federal do Rio Grande do Norte, PROGRAMA DE P?S-GRADUA??O EM CI?NCIAS CLIM?TICAS, UFRN, Brasil
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Repositório Institucional da UFRN, instname:Universidade Federal do Rio Grande do Norte, instacron:UFRN
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0088 seconds