Return to search

Cognitive Formation Flight in Multi-Unmanned Aerial Vehicle-Based Personal Remote Sensing Systems

This work introduces a design and implementation of using multiple unmanned aerial vehicles (UAVs) to achieve cooperative formation flight based on the personal remote sensing platforms developed by the author and the colleagues in the Center for Self-Organizing and Intelligent Systems (CSOIS). The main research objective is to simulate the multiple UAV system, design a multi-agent controller to achieve simulated formation flight with formation reconfiguration and real-time controller tuning functions, implement the control system on actual UAV platforms and demonstrate the control strategy and various formation scenarios in practical flight tests. Research combines analysis on flight control stabilities, develop- ment of a low-cost UAV testbed, mission planning and trajectory tracking, multiple sensor fusion research for UAV attitude estimations, low-cost inertial measurement unit (IMU) evaluation studies, AggieAir remote sensing platform and fail-safe feature development, al- titude controller design for vertical take-off and landing (VTOL) aircraft, and calibration and implementation of an air pressure sensor for wind profiling purposes on the developed multi-UAV platform. Definitions of the research topics and the plans are also addressed.

Identiferoai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-1977
Date01 August 2011
CreatorsDi, Long
PublisherDigitalCommons@USU
Source SetsUtah State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAll Graduate Theses and Dissertations
RightsCopyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact Andrew Wesolek (andrew.wesolek@usu.edu).

Page generated in 0.0022 seconds