Decision making problems are amongst the most common challenges facing managers at different management levels in the organisation: strategic, tactical, and operational. However, prior reaching decisions at the operational level of the management hierarchy, operations management departments frequently have to deal with the optimisation process to evaluate the available decision alternatives. Industries with complex supply chain structures and service organisations that have to optimise the utilisation of their resources are examples. Conventionally, operational decisions used to be taken centrally by a decision making authority located at the top of a hierarchically-structured organisation. In order to take decisions, information related to the managed system and the affecting externalities (e.g. demand) should be globally available to the decision maker. The obtained information is then processed to reach the optimal decision. This approach usually makes extensive use of information systems (IS) containing myriad of optimisation algorithms and meta-heuristics to process the high amount and complex nature of data. The decisions reached are then broadcasted to the passive actuators of the system to put them in execution. On the other hand, recent advancements in information and communication technologies (ICT) made it possible to distribute the decision making rights and proved its applicability in several sectors. The market-based approach is as such a distributed decision making mechanism where passive actuators are delegated the rights of taking individual decisions matching their self-interests. The communication among the market agents is done through market transactions regulated by auctions. The system’s global optimisation, therefore, raise from the aggregated self-oriented market agents. As opposed to the centralised approach, the main characteristics of the market-based approach are the market mechanism and local knowledge of the agents. The existence of both approaches attracted several studies to compare them in different contexts. Recently, some comparisons compared the centralised versus market-based approaches in the context of transportation applications from an algorithm perspective. Transportation applications and routing problems are assumed to be good candidates for this comparison given the distributed nature of the system and due to the presence of several sources of uncertainty. Uncertainty exceptions make decisions highly vulnerable and necessitating frequent corrective interventions to keep an efficient level of service. Motivated by the previous comparison studies, this research aims at further investigating the features of both approaches and to contrast them in the context of a distributed task allocation problem in light of environmental uncertainty. Similar applications are often faced by service industries with mobile workforce. Contrary to the previous comparison studies that sought to compare those approaches at the mechanism level, this research attempts to identify the effect of the most significant characteristics of each approach to face environmental uncertainty, which is reflected in this research by the arrival of dynamic tasks and the occurrence of stochasticity delays. To achieve the aim of this research, a target optimisation problem from the VRP family is proposed and solved with both approaches. Given that this research does not target proposing new algorithms, two basic solution mechanisms are adopted to compare the centralised and the market-based approach. The produced solutions are executed on a dedicated multi-agent simulation system. During execution dynamism and stochasticity are introduced. The research findings suggest that a market-based approach is attractive to implement in highly uncertain environments when the degree of local knowledge and workers’ experience is high and when the system tends to be complex with large dimensions. It is also suggested that a centralised approach fits more in situations where uncertainty is lower and the decision maker is able to make timely decision updates, which is in turn regulated by the size of the system at hand.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:557772 |
Date | January 2012 |
Creators | Al-Yafi, Karim |
Contributors | Lee, H.; Mansouri, A. |
Publisher | Brunel University |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://bura.brunel.ac.uk/handle/2438/6535 |
Page generated in 0.0018 seconds