Malgré le nombre croissant de capteurs dans les domaines de la chimie et la biologie, de nombreuses réactions n’ont pas encore été correctement identifiées et étudiées. C’est entre autres le cas des interactions intermoléculaires à l’interface liquide/solide trouvées dans les chimies de surface utilisées pour les méthodes de diagnostics médicaux et l’identification de divers processus biologiques. Afin de correctement comprendre les mécanismes en jeux, il est important de pouvoir croiser différentes méthodes de détection pour obtenir des informations complémentaires.MuLe principal objectif de cette étude est de dimensionner, fabriquer et caractériser un détecteur optique intégré sur verre basé sur la résonance plasmonique de surface, destiné à terme à être combiné avec d’autres techniques de détection. La résonance plasmonique de surface est une technique reconnue pour sa sensibilité adaptée à la détection de surface, qui a l’avantage d’être sans marquage et permet de fournir un suivi en temps réel de la cinétique d’une réaction. L’avantage principal de ce capteur est qu’il a été dimensionné pour une large gamme d’indice de réfraction de l’analyte, allant de 1,33 à 1,48. Ces valeurs correspondent à la plupart des entités biologiques associées à leurs couches d’accroche, particulièrement les matrices de polymères. Ces matrices sont de plus en plus utilisées non seulement pour leur capacité à augmenter la densité d’analytes présents à la surface du capteur, mais aussi pour leurs propriétés favorisant l’adsorption spécifique et leur utilisation comme élément actif de reconnaissance biologique.Étant donné que beaucoup d’études biologiques nécessitent la comparaison de la mesure à une référence ou à une autre mesure, le second objectif du projet est d’étudier le potentiel du système SPR intégré sur verre pour la détection multianalyte.MuLes trois premiers chapitres se concentrent sur l’objectif principal du projet. Le dimensionnement du dispositif suivant un cahier des charges préétabli est présenté, ainsi que les outils de simulation. Le procédé de fabrication de la puce optique sur verre est ensuite décrit, ainsi que les instruments et protocoles de caractérisation. Une comparaison est faite entre les simulations et les résultats expérimentaux, et les performances des outils numériques ainsi que celles du dispositif sont évaluées.Le dernier chapitre de la thèse présente l’étude de plusieurs techniques de multiplexage spectral adaptées à un système SPR intégré, exploitant en particulier la technologie sur verre. L’objectif est de fournir au moins deux détections simultanées. Dans ce cadre, plusieurs solutions sont proposées et les dispositifs associés sont dimensionnés, fabriqués et testés. / In spite of the growing number of available biosensors, many biochemical reactions and biological components have not yet been studied in detail. Among them, some require the combination of several detection techniques in order to retrieve enough information to characterize them fully. An unknown reaction based, for example, on DNA hybridization could be characterized with an electrochemical sensor, a mechanical sensor and an optical sensor, each giving a different type of information.MuThe main objective of the work presented here is to design, fabricate and characterize a flexible integrated optical biosensor based on surface plasmon resonance, intended to be then combined with other detection techniques. Surface Plasmon Resonance (SPR) is well known to be a sensitive technique for surface-based biochemical detection. It has the advantage to be an unlabeled method and provides real time information on the kinetics of a reaction. The use of an integrated technology enables us to integrate several sensors on the same chip for the same sample, making them compact and low-cost. The flexibility of the proposed SPR biosensor comes from the fact that it is designed for a large range of analyte refractive indices, from 1.33 to 1.48 in the 600 nm-1000 nm wavelength range. These values are suitable for most biological entities and their ligand layers, and especially for hydrophilic polymer matrices used to trap DNA or protein entities. These biochemical matrices are used more and more for their ability to trap high densities of analyte, provide a strong binding and serve as an active detection medium with good anti-fouling properties.MuAs several biochemical studies require the simultaneous comparison of measurements to a reference or to another measurement, the second objective of this project is to study the potential of multianalyte detection in an integrated SPR device on glass.The first three chapters of the thesis are focused on the main objective. The design according to predefined specifications is presented, at the same time as the simulation tools. The fabrication process of the glass chip is introduced, as well as the characterization instruments and protocols. Simulation and experimental results are then compared, and the device performance is assessed.The last chapter describes the study of several spectral multiplexing techniques adapted to an integrated SPR system using the glass technology. The goal is to provide at least two simultaneous measurements. Several detection techniques are examined and the related devices are designed, fabricated and characterized.
Identifer | oai:union.ndltd.org:theses.fr/2016GREAT040 |
Date | 28 June 2016 |
Creators | Bonnault, Sandie de |
Contributors | Grenoble Alpes, Université de Sherbrooke (Québec, Canada), Broquin, Jean-Emmanuel, Charette, Paul |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0017 seconds