Return to search

Design and Implementation of Multi-core Support for an Embedded Real-time Operating System for Space Applications

Nowadays, multi-core processors are widely used in embedded applications due to the advantages of higher performance and lower power consumption. However, the complexity of multi-core architectures makes it a considerably challenging task to extend a single-core version of a real-time operating system to support multi-core platform. This thesis documents the process of design and implementation of a multi-core version of RODOS - an embedded real-time operating system developed by German Aerospace Center and the University of Würzburg - on a dual-core platform. Two possible models are proposed: Symmetric Multiprocessing and Asymmetric Multiprocessing. In order to prevent the collision of the global components initialization, a new multi-core boot loader is created to allow that each core boots up in a proper manner. A working version of multi-core RODOS is implemented that has an ability to run tasks on a multi-core platform. Several test cases are applied and verified that the performance on the multi-core version of RODOS achieves around 180% improved than the same tasks running on the original RODOS. Deadlock free communication and synchronization APIs are provided to let parallel applications share data and messages in a safe manner.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-174880
Date January 2015
CreatorsZhang, Wei
PublisherKTH, Skolan för informations- och kommunikationsteknik (ICT)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-ICT-EX ; 2015:37

Page generated in 0.0019 seconds