Return to search

Groundwater impact assessment and protection

<p>In the recent decades, therehave been frequent conflicts between groundwater waterresources and environmentally hazardous activities. Newmethodologies for aiding decision-making in groundwater impactassessment and protection areneeded and in which issues ofincreased awareness, better understanding of the groundwaterresources processes, and validation of predictive mathematicalmodels are addressed.</p><p>A framework fordecision–aid, based on predictive simulations that a)predicts the environmental impacts b) provides the totaleconomical value c) visualises the impacts and the groundwaterproperties and d) describes the uncertainties in the results isproposed herein. The framework can be applied in environmentalimpact assessments, strategic environmental assessments andprotection and management of water resources. The results ofthe model are used as feedback for determining new scenarios,depending on the required uncertainties, and if the plannedactivity is sustainable, and/or fulfils the legislative andpolicy measures. This framework is applied to a particular casestudy, Nybroåsen, in the south-eastern part of Sweden,where the highway E22 is constructed through the importantglaciofluvial esker aquifer, passing the protection zone of thewater supply for the Kalmar municipality.</p><p>The impacts from the new highwayand the existing road have been predicted by two-dimensionalphysically based time-variant flow and solute groundwatermodelling. The results, breakthrough curves of contaminantconcentration in wells and maps of concentration distributions,as well as travel times, flow paths, and capture zones forwells determined by particle tracking have been presented.</p><p>The constructed model of theNybroåsen study area was calibrated by comparing observedand simulated groundwater levels for 15 observation wells forten years of measurements. The model has been evaluated bothgraphically and numerically and the calibration target wasfulfilled for 13 of the 15 observation wells. The model workincludes investigations of the catchment information, a waterbalance study, simulation of the groundwater recharge,consideration of the unsaturated zone by a numerical columnsimulation, and sensitivity analysis.</p><p>From the sensitivity analysis ofthe flow and transport parameters, it has been shown that theuncertainties are mainly due to the hydraulic conductivity.Comparison of the derived conductivity from the steady-stateautomatic calibration and the time-variant calibration showedthat there are major differences in the derived parameters,which illustrates the importance of a time dependentcalibration over both wet and dry periods and in more than onepoint in the area of interest of the model predictions.</p><p>In addition, a multi-criteriadecision analysis has been carried out for four roadalternatives (including the new highway E22) and the existingroad in the case study concerned. The multi-criteria decisionaid is applied as an illustration of how it can be used in thestudy area to identify a) interest groups of actors and theirconcerns b) ranking of alternative road scenarios according toactors’preferences and c) coalition groups of actors<i>i.e.</i>groups that have similar views with regard to theroad alternatives.</p><p><b>Keywords:</b>Physically-based groundwater modelling,contamination, flow and solute transport, glaciofluvialdeposits, Nybroåsen, Sweden, and multi-criteriadecision-aid.</p>

Identiferoai:union.ndltd.org:UPSALLA/oai:DiVA.org:kth-1234
Date January 2001
CreatorsEliasson, Åse
PublisherKTH, Civil and Environmental Engineering, Institutionen för anläggning och miljö
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeLicentiate thesis, comprehensive summary, text
RelationTrita-AMI. LIC, ; 2066

Page generated in 0.002 seconds