Return to search

Multidimensional approaches to performance evaluation of competing forecasting models

The purpose of my research is to contribute to the field of forecasting from a methodological perspective as well as to the field of crude oil as an application area to test the performance of my methodological contributions and assess their merits. In sum, two main methodological contributions are presented. The first contribution consists of proposing a mathematical programming based approach, commonly referred to as Data Envelopment Analysis (DEA), as a multidimensional framework for relative performance evaluation of competing forecasting models or methods. As opposed to other performance measurement and evaluation frameworks, DEA allows one to identify the weaknesses of each model, as compared to the best one(s), and suggests ways to improve their overall performance. DEA is a generic framework and as such its implementation for a specific relative performance evaluation exercise requires a number of decisions to be made such as the choice of the units to be assessed, the choice of the relevant inputs and outputs to be used, and the choice of the appropriate models. In order to present and discuss how one might adapt this framework to measure and evaluate the relative performance of competing forecasting models, we first survey and classify the literature on performance criteria and their measures – including statistical tests – commonly used in evaluating and selecting forecasting models or methods. In sum, our classification will serve as a basis for the operationalisation of DEA. Finally, we test DEA performance in evaluating and selecting models to forecast crude oil prices. The second contribution consists of proposing a Multi-Criteria Decision Analysis (MCDA) based approach as a multidimensional framework for relative performance evaluation of the competing forecasting models or methods. In order to present and discuss how one might adapt such framework, we first revisit MCDA methodology, propose a revised methodological framework that consists of a sequential decision making process with feedback adjustment mechanisms, and provide guidelines as to how to operationalise it. Finally, we adapt such a methodological framework to address the problem of performance evaluation of competing forecasting models. For illustration purposes, we have chosen the forecasting of crude oil prices as an application area.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:562580
Date January 2009
CreatorsXu, Bing
ContributorsOuenniche, Jamal
PublisherUniversity of Edinburgh
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/1842/4081

Page generated in 0.002 seconds