Return to search

Multi-modality quality assessment for unconstrained biometric samples / Évaluation de la qualité multimodale pour des échantillons biométriques non soumis à des contraintes

L’objectif de ces travaux de recherche est d’étudier les méthodes d’évaluation de laqualité des images biométriques multimodales sur des échantillons acquis de manièrenon contrainte. De nombreuses s études ont noté l’importance de la qualité del’échantillon pour un système de reconnaissance ou un algorithme de comparaison,puisque la performance du système biométrique est intrinsèquement dépendant dela qualité des images de l’échantillon. Dès lors, la nécessité d’évaluer la qualitédes échantillons biométriques pour plusieurs modalités (empreintes digitales, iris,visage, etc.) est devenue primordiale notamment avec l’apparition de systèmesbiométriques multimodaux de haute précision.Après une introduction présentant un historique de la biométrie et des préceptesliés à la qualité des échantillons biométriques, nous présentons le concept d’évaluationde la qualité des échantillons pour plusieurs modalités. Les normes de qualitéISO / CEI récemment établies pour les empreintes digitales, l’iris et le visage sontprésentées. De plus, des approches d’évaluation de la qualité des échantillons conçuesspécifiquement pour les empreintes digitales avec et sans contact, pour l’iris(dont une image est capturée en proche infrarouge et dans le domaine visible),ainsi que le visage sont étudiées. Finalement, des techniques d’évaluation des performancesdes mesures de qualité des échantillons biométriques sont égalementétudiées.Sur la base des conclusions formulées suite à l’étude des solutions algorithmiques portant sur l’évaluation de la qualité des échantillons biométriques, nous proposonsun cadre commun pour l’évaluation de la qualité d’image biométrique pourplusieurs modalité. Après avoir étudié les attributs de qualité basés sur l’image parmodalité biométrique, nous examinons quelle intersection existe pour l’ensembledes modalités. Ensuite, nous sélectionnons et redéfinissons les attributs de qualitébasés sur l’image qui sont les plus importants afin de définir un cadre commun.Afin de relier ces attributs de qualité aux vrais échantillons biométriques,nous développons une nouvelle base de données de qualité d’image biométriquemulti-modalité qui contient des images échantillons de haute qualité et des imagesdégradées pour l’empreinte digitale acquise sans contact, l’iris (dont l’acquisitionest réalisée dans le spectre visible) et le visage. Les types de dégradation appliquéssont liés aux attributs de qualité qui sont communs aux diverses modalitéset qui sont basés sur l’image. Un autre aspect important du cadre commun proposéest la qualité de l’image et ses applications en biométrie. Nous avons d’abordintroduit et classifié les métriques de qualité d’image existantes, puis effectué unbref aperçu des métriques de qualité d’image sans référence, qui peuvent être appliquéespour l’évaluation de la qualité des échantillons biométriques. De plus, nousétudions comment les mesures de qualité d’image sans référence ont été utiliséespour l’évaluation de la qualité des empreintes digitales, de l’iris et des modalitésbiométriques du visage.Des expériences pour l’évaluation de la performance des métriques de qualitéd’image sans référence sur les images de visage et de l’iris sont effectuées. Lesrésultats expérimentaux indiquent qu’il existe plusieurs métriques qui peuventévaluer la qualité des échantillons biométriques de l’iris et du visage avec un fortcoefficient de correlation. La méthode obtenant les meilleurs résultats en termede performance est ré-entrainée sur des images d’empreintes digitales, ce qui permetd’augmenter significativement les performances du système de reconnaissancebiométrique.À travers le travail réalisé dans cette thèse, nous avons démontré l’applicabilitédes métriques de qualité d’image sans référence pour l’évaluation d’échantillonsbiométriques multi-modalité non contraints. / The aim of this research is to investigate multi-modality biometric image qualityassessment methods for unconstrained samples. Studies of biometrics noted thesignificance of sample quality for a recognition system or a comparison algorithmbecause the performance of the biometric system depends mainly on the qualityof the sample images. The need to assess the quality of multi-modality biometricsamples is increased with the requirement of a high accuracy multi-modalitybiometric systems.Following an introduction and background in biometrics and biometric samplequality, we introduce the concept of biometric sample quality assessment for multiplemodalities. Recently established ISO/IEC quality standards for fingerprint,iris, and face are presented. In addition, sample quality assessment approacheswhich are designed specific for contact-based and contactless fingerprint, nearinfrared-based iris and visible wavelength iris, as well as face are surveyed. Followingthe survey, approaches for the performance evaluation of biometric samplequality assessment methods are also investigated.Based on the knowledge gathered from the biometric sample quality assessmentchallenges, we propose a common framework for the assessment of multi-modalitybiometric image quality. We review the previous classification of image-basedquality attributes for a single biometric modality and investigate what are the commonimage-based attributes for multi-modality. Then we select and re-define themost important image-based quality attributes for the common framework. In order to link these quality attributes to the real biometric samples, we develop anew multi-modality biometric image quality database which has both high qualitysample images and degraded images for contactless fingerprint, visible wavelengthiris, and face modalities. The degradation types are based on the selected commonimage-based quality attributes. Another important aspect in the proposed commonframework is the image quality metrics and their applications in biometrics. Wefirst introduce and classify the existing image quality metrics and then conducteda brief survey of no-reference image quality metrics, which can be applied to biometricsample quality assessment. Plus, we investigate how no-reference imagequality metrics have been used for the quality assessment for fingerprint, iris, andface biometric modalities.The experiments for the performance evaluation of no-reference image qualitymetrics for visible wavelength face and iris modalities are conducted. The experimentalresults indicate that there are several no-reference image quality metricsthat can assess the quality of both iris and face biometric samples. Lastly, we optimizethe best metric by re-training it. The re-trained image quality metric canprovide better recognition performance than the original. Through the work carriedout in this thesis we have shown the applicability of no-reference image qualitymetrics for the assessment of unconstrained multi-modality biometric samples.

Identiferoai:union.ndltd.org:theses.fr/2018NORMC284
Date22 June 2018
CreatorsLiu, Xinwei
ContributorsNormandie, Gjøvik University College (Norvège), Charrier, Christophe
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0035 seconds