Return to search

Une approche Bayésienne pour l'optimisation multi-objectif sous contraintes / A Bayesian approach to constrained multi-objective optimization

Ces travaux de thèse portent sur l'optimisation multi-objectif de fonctions à valeurs réelles sous contraintes d'inégalités. En particulier, nous nous intéressons à des problèmes pour lesquels les fonctions objectifs et contraintes sont évaluées au moyen d'un programme informatique nécessitant potentiellement plusieurs heures de calcul pour retourner un résultat. Dans ce cadre, il est souhaitable de résoudre le problème d'optimisation en utilisant le moins possible d'appels au code de calcul. Afin de résoudre ce problème, nous proposons dans cette thèse un algorithme d'optimisation Bayésienne baptiséBMOO. Cet algorithme est fondé sur un nouveau critère d'amélioration espérée construit afin d'être applicable à des problèmes fortement contraints et/ou avecde nombreux objectifs. Ce critère s'appuie sur une fonction de perte mesurant le volume de l'espace dominé par les observations courantes, ce dernier étant défini au moyen d'une règle de domination étendue permettant de comparer des solutions potentielles à la fois selon les valeurs des objectifs et des contraintes qui leurs sont associées. Le critère ainsi défini généralise plusieurs critères classiques d'amélioration espérée issus de la littérature. Il prend la forme d'une intégrale définie sur l'espace des objectifs et des contraintes pour laquelle aucune forme fermée n'est connue dans leas général. De plus, il doit être optimisé à chaque itération de l'algorithme.Afin de résoudre ces difficultés, des algorithmes de Monte-Carlo séquentiel sont également proposés. L'efficacité de BMOO est illustrée à la fois sur des cas tests académiques et sur quatre problèmes d'optimisation représentant de réels problèmes de conception. / In this thesis, we address the problem of the derivative-free multi-objective optimization of real-valued functions subject to multiple inequality constraints. In particular, we consider a setting where the objectives and constraints of the problem are evaluated simultaneously using a potentially time-consuming computer program. To solve this problem, we propose a Bayesian optimization algorithm called BMOO. This algorithm implements a new expected improvement sampling criterion crafted to apply to potentially heavily constrained problems and to many-objective problems. This criterion stems from the use of the hypervolume of the dominated region as a loss function, where the dominated region is defined using an extended domination rule that applies jointly on the objectives and constraints. Several criteria from the Bayesian optimization literature are recovered as special cases. The criterion takes the form of an integral over the space of objectives and constraints for which no closed form expression exists in the general case. Besides, it has to be optimized at every iteration of the algorithm. To solve these difficulties, specific sequential Monte-Carlo algorithms are also proposed. The effectiveness of BMOO is shown on academic test problems and on four real-life design optimization problems.

Identiferoai:union.ndltd.org:theses.fr/2017SACLC045
Date12 July 2017
CreatorsFeliot, Paul
ContributorsUniversité Paris-Saclay (ComUE), Vazquez, Emmanuel, Bect, Julien
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench, English
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0022 seconds