L’objectif de cette thèse est le développement de méthodes d’optimisation multi-objectif pour la résolution de problèmes de conception des structures mécaniques. En effet, la plupart des problèmes réels dans le domaine de la mécanique des structures ont plusieurs objectifs qui sont souvent antagonistes. Il s’agit, par exemple, de concevoir des structures en optimisant leurs poids, leurs tailles, et leurs coûts de production. Le but des méthodes d’optimisation multi-objectif est la recherche des solutions de compromis entre les objectifs étant donné l’impossibilité de satisfaire tout simultanément. Les métaheuristiques sont des méthodes d’optimisation capables de résoudre les problèmes d’optimisation multi-objective en un temps de calcul raisonnable sans garantie de l’optimalité de (s) solution (s). Au cours des dernières années, ces algorithmes ont été appliqués avec succès pour résoudre le problème des mécaniques des structures. Dans cette thèse deux métaheuristiques ont été développées pour la résolution des problèmes d’optimisation multi-objectif en général et de conception de structures mécaniques en particulier. Le premier algorithme baptisé MOBSA utilise les opérateurs de croisement et de mutation de l’algorithme BSA. Le deuxième algorithme nommé NNIA+X est une hybridation d’un algorithme immunitaire et de trois croisements inspirés de l’opérateur de croisement original de l’algorithme BSA. Pour évaluer l’efficacité et l’efficience de ces deux algorithmes, des tests sur quelques problèmes dans littérature ont été réalisés avec une comparaison avec des algorithmes bien connus dans le domaine de l’optimisation multi-objectif. Les résultats de comparaison en utilisant des métriques très utilisées dans la littérature ont démontré que ces deux algorithmes peuvent concurrencer leurs prédécesseurs. / The objective of this thesis is the development of multi-objective optimization methods for solving mechanical design problems. Indeed, most of the real problems in the field of mechanical structures have several objectives that are often antagonistic. For example, it is about designing structures by optimizing their weight, their size, and their production costs. The goal of multi-objective optimization methods is the search for compromise solutions between objectives given the impossibility to satisfy all simultaneously. Metaheuristics are optimization methods capable of solving multi-objective optimization problems in a reasonable calculation time without guaranteeing the optimality of the solution (s). In recent years, these algorithms have been successfully applied to solve the problem of structural mechanics. In this thesis, two metaheuristics have been developed for the resolution of multi-objective optimization problems in general and of mechanical structures design in particular. The first algorithm called MOBSA used the crossover and mutation operators of the BSA algorithm. The second one named NNIA+X is a hybridization of an immune algorithm and three crossover inspired by the original crossover operator of the BSA algorithm. To evaluate the effectiveness and efficiency of these two algorithms, tests on some problems in literature have been made with a comparison with algorithms well known in the field of multi-objective optimization. The comparison results using metrics widely used in the literature have shown that our two algorithms can compete with their predecessors.
Identifer | oai:union.ndltd.org:theses.fr/2018NORMIR13 |
Date | 04 July 2018 |
Creators | Tchvagha Zeine, Ahmed |
Contributors | Normandie, Université Mohammed V-Agdal (Rabat, Maroc), El Hami, Abdelkhalak, Ellaia, Rachid |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0021 seconds