Return to search

Multi-objective Combinatorial Optimization Using Evolutionary Algorithms

Due to the complexity of multi-objective combinatorial optimization problems (MOCO), metaheuristics like multi-objective evolutionary algorithms (MOEA) are gaining importance to obtain a well-converged and well-dispersed Pareto-optimal frontier approximation. In this study, of the well-known MOCO problems, single-dimensional multi-objective knapsack problem and multi-objective assignment problem are taken into consideration. We develop a steady-state and elitist MOEA in order to approximate the Pareto-optimal frontiers. We utilize a territory concept in order to provide diversity over the Pareto-optimal frontiers of various problem instances. The motivation behind the territory definition is to attach the algorithm the advantage of fast execution by eliminating the need for an explicit diversity preserving operator. We also develop an interactive preference incorporation mechanism to converge to the regions that are of special interest for the decision maker by interacting with him/her during the optimization process.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/2/12610866/index.pdf
Date01 August 2009
CreatorsOzsayin, Burcu
ContributorsKoksalan, Murat
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypeM.S. Thesis
Formattext/pdf
RightsTo liberate the content for METU campus

Page generated in 0.0018 seconds