Palaeoenvironmental investigations from the Lake Plav catchment of the Prokletije Mountains in Montenegro and Albania, allowed primarily climatic change and anthropogenic influences during the Late Holocene and particularly the Little Ice Age (LIA) to be identified. Three sediment cores were analysed, two from Lake Plav (904 m a.s.l., cores LPCA and LPCB) and one from the upper catchment site of Lake C in Buni i Jezerces (1754 m a.s.l., core BJC1). These sediments were analysed for a variety of proxies including pollen, ostracoda, organic content, magnetic susceptibility and particle size. Chronologies for each sediment core were constructed using AMS radiocarbon, 210Pb and 137Cs dating techniques. The lower sites provided a record of past flood events, anthropogenic influences, lake development and infilling that have occurred since c. AD 500. Core BJC1 provided longer-term data since c. 2720 BC, providing complementary records of Pediastrum and thermophilous arboreal types, identified following a catchment vegetation survey. Glacial geomorphological mapping of the Maja e Koljaet glacier in Buni i Jezerces, Albania, enabled a catchment specific palaeotemperature record to be constructed from AD 1859 to the present. Glacial features were dated using lichenometry before degree-day modelling enabled temperature reconstruction. The palaeotemperature reconstruction for the Albanian Little Ice Age glacial maximum (LIAGM) suggests that temperatures were 0.9°C below the 1980-2008 annual temperature mean. This work also provided the first record of glacial extent during the LIA in Albania, indicating that the Albania LIAGM occurred c. AD 1859, around a decade after the European LIAGM and two decades before that of Montenegro. Anthropogenic indicators were used to reconstruct human activity in the catchment, which suggested that arable farming was pursued throughout the Medieval Warm Period (MWP; c. AD 800-1090) and continued during a period of transition to the LIA, between c. AD 1090 and AD 1300. The LIA (c. AD 1300 - 1860) was characterised by an abrupt Alnus decline, thought to be the result of anthropogenic clearance of the floodplain and reduction of both arable and thermophilous types. During the LIA sedimentation rates were up to 1.41 + 0.17 cm yr-1 at Lake Plav causing lake infilling and shallowing allowing wetland expansion c. AD 1570. The result of lake infilling is highlighted during the early 20th century, when the lake extent fell by around 42% as a result of climatic amelioration post-LIA causing lake levels to fall and wetland indicators to decline. The inferred past climatic changes from the Lake Plav catchment are compared to data from around the Mediterranean and Southern Europe. This allows identification of the climatic influences affecting the site during the Late Holocene. Catchment records have provided evidence of cooler and wetter conditions coeval to the occurrence of solar minima such as the Wolf, Spörer and Maunder minima. Overall, the records suggest that continental atmospheric circulation patterns such as the North Sea-Caspian Pattern (NCP) and East Atlantic-West Russia pattern (EA-WR), dominated the site until the late 1800s, when records become more synchronous with the NAO index and Mediterranean/Southern European data.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:553273 |
Date | January 2011 |
Creators | Wilkinson, Rose |
Contributors | Woodward, Jamie; Blackford, Jeffrey; Hughes, Philip |
Publisher | University of Manchester |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | https://www.research.manchester.ac.uk/portal/en/theses/a-multiproxy-study-of-late-holocene-environmental-change-in-the-prokletije-mountains-montenegro-and-albania(4b54e863-c9ff-407f-bcfa-a4aaed0c6cd3).html |
Page generated in 0.0133 seconds