Return to search

Desambiguação lexical de sentidos para o português por meio de uma abordagem multilíngue mono e multidocumento / Word Sense Disambiguation for portuguese through multilingual mono and multi-document

A ambiguidade lexical é considerada uma das principais barreiras para melhoria de aplicações do Processamento de Língua Natural (PLN). Neste contexto, tem-se a área de Desambiguação Lexical de Sentido (DLS), cujo objetivo é desenvolver e avaliar métodos que determinem o sentido correto de uma palavra em um determinado contexto por meio de um conjunto finito de possíveis significados. A DLS é empregada, principalmente, no intuito de prover recursos e ferramentas para diminuir problemas de ambiguidade e, consequentemente, contribuir para melhorias de resultados em outras áreas do PLN. Para o Português do Brasil, pouco se tem pesquisado nesta área, havendo alguns trabalhos bem específicos de domínio. Outro fator importante é que diversas áreas do PLN engajam-se no cenário multidocumento, onde a computação é efetuada sobre uma coleção de textos, todavia, não há relato de trabalhos de DLS direcionados a este cenário, tampouco experimentos de desambiguação neste domínio. Portanto, neste trabalho de mestrado, objetivou-se o desenvolvimento de métodos de DLS de domínio geral voltado à língua Portuguesa do Brasil e o desenvolvimento de algoritmos de desambiguação que façam uso de informações multidocumento, bem como a experimentação e avaliação destes no cenário multidocumento. Para tanto, a fim de subsidiar experimentos, desenvolvimento e avaliação deste projeto, anotou-se manualmente o córpus CSTNews, caracterizado como um córpus multidocumento, utilizando a WordNet de Princeton como repositório de sentidos, que organiza os significados por meio de conjuntos de sinônimos ( synsets) e relações linguísticas entre estes. Foram desenvolvidos quatro métodos de DLS e algumas variações, sendo: um método heurístico (para aferir valores de baseline); variações do algoritmo de Lesk (1986); adaptação do algoritmo de Mihalcea and Moldovan (1999); e uma variação do método de Lesk para o cenário multidocumento. Foram realizados três experimentos para avaliação dos métodos, cujos objetivos foram: determinar o desempenho geral dos algoritmos em todo o córpus; avaliar a qualidade de desambiguação de palavras mais ambíguas no córpus; e verificar o ganho de qualidade da desambiguação ao empregar informação multidocumento. Após estes experimentos, pôde-se observar que o método heurístico apresenta um melhor resultado geral. Contudo, é importante ressaltar que a maioria das palavras anotadas no córpus tiveram apenas um synset, que, normalmente, era o mais frequente, o que, consequentemente, apresenta um cenário mais propício ao método heurístico. Outro fato importante foi que, neste cenário, a diferença de desempenho entre o método de DLS multidocumento e o heurístico é estatisticamente irrelevante. Já para a desambiguação de palavras mais ambíguas, o método heurístico foi inferior, evidenciando que, para a desambiguação de palavras mais ambíguas, são necessários métodos mais sofisticados de DLS. Por fim, verificou-se que a utilização de informação multidocumento auxilia o processo de desambiguação. As contribuições deste trabalho podem ser agrupadas entre teóricas e técnicas. Nas teóricas, tem-se a investigação e análises da DLS no cenário multidocumento. Entre as contribuições técnicas, foram desenvolvidos métodos de DLS, um córpus anotado e uma ferramenta de anotação direcionados à língua Portuguesa do Brasil, que podem avançar as pesquisas em DLS para o idioma / The lexical ambiguity is considered one of the main barries to improving applications of Natural Language Processing (NLP). In this context, it has benn the area of Word Sense Disambiguation (WSD), whose goal is to develop and evaluate methods to determine the correct sense of a word in a give context by a nite set of possible meanings. The DLS is used mainly in order to provide resources and tools to reduce problems of ambiguity and thus contribute to improved results in other areas of NLP. In the Portuguese of Brazil, little has been researched in this area, with some work and specic domain. Another important factor is that many areas of NLP commit themselves in multidocument scenario, where the computation is performed on a collection of texts, however, there is no report of WSD work directed to this scenario, either disambiguation experiments in this eld. Therefore, this master thesis aimed to develop methods of WSD general domain facing the Portuguese language in Brazil and the development of algorithms that make use of disambiguation multidocument informations, as well as experimentation and evaluation of the multidocument scenario. Therefore, in order to support experiments, development and evaluation of this project, the corpus CSTNews with 50 document collections, was manually annotated by means of synsets of the WordNet Princeton. Four methods were developed: A heuristic method (to measure values fo baseline); variations of the Lesk (1986) algorithm; a adaptation of the Mihalcea and Moldovan (1999) algorithm; and a variation of the Lesk method for multidocument scenario. Three experiments were conducted to evaluate the methods, whose objectives were to determine the general performance algorithms across the corpus; evaluate the quality of disambiguation of most ambiguous words in the corpus, and check the gain quality of disambiguation by employing information multidocumento. After these experiments, it was observed that the heuristic method presents a better overall result. However, it is important to note that most of the words in the annotated corpus had only one synset, which usually was the most frequent, which, in turn, presents a scenario more conducive to the heuristic method. Another important fact was that in this scenario, the performance dierence between the heuristic method and multidocument algorithm was statistically irrelevant. As for the disambiguation of most ambiguous words, the heuristic method was lower, indicating that, for the disambiguation of ambiguous words, more sophisticated WSD methods are needed. Finally, it has been found that the use of multidocument information assists the disambiguation process. The contributions of this work can be divided between theoretical and technical. In theory, there is the research and analysis of WSD in multidocument scenario. Among the techniques contributions, WSD methods have been developed an annotated corpus and annotation tool targeted to the Portuguese language in Brazil that can advance research in WSD for the language

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-28082013-145948
Date28 May 2013
CreatorsNóbrega, Fernando Antônio Asevêdo
ContributorsPardo, Thiago Alexandre Salgueiro
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguagePortuguese
TypeDissertação de Mestrado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0032 seconds