Return to search

Multiframe Superresolution Techniques For Distributed Imaging Systems

Multiframe image superresolution has been an active research area for many years. In this approach image processing techniques are used to combine multiple low-resolution (LR) images capturing different views of an object. These multiple images are generally under-sampled, degraded by optical and pixel blurs, and corrupted by measurement noise. We exploit diversities in the imaging channels, namely, the number of cameras, magnification, position, and rotation, to undo degradations. Using an iterative back-projection (IBP) algorithm we quantify the improvements in image fidelity gained by using multiple frames compared to single frame, and discuss effects of system parameters on the reconstruction fidelity. As an example, for a system in which the pixel size is matched to optical blur size at a moderate detector noise, we can reduce the reconstruction root-mean-square-error by 570% by using 16 cameras and a large amount of diversity in deployment.We develop a new technique for superresolving binary imagery by incorporating finite-alphabet prior knowledge. We employ a message-passing based algorithm called two-dimensional distributed data detection (2D4) to estimate the object pixel likelihoods. We present a novel complexity-reduction technique that makes the algorithm suitable even for channels with support size as large as 5x5 object pixels. We compare the performance and complexity of 2D4 with that of IBP. In an imaging system with an optical blur spot matched to pixel size, and four 2x2 undersampled LR images, the reconstruction error for 2D4 is 300 times smaller than that for IBP at a signal-to-noise ratio of 38dB.We also present a transform-domain superresolution algorithm to efficiently incorporate sparsity as a form of prior knowledge. The prior knowledge that the object is sparse in some domain is incorporated in two ways: first we use the popular L1 norm as the regularization operator. Secondly we model wavelet coefficients of natural objects using generalized Gaussian densities. The model parameters are learned from a set of training objects and the regularization operator is derived from these parameters. We compare the results from our algorithms with an expectation-maximization (EM) algorithm for L1 norm minimization and also with the linear minimum mean squared error (LMMSE) estimator.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/194713
Date January 2008
CreatorsShankar, Premchandra M.
ContributorsNeifeld, Mark A., Neifeld, Mark A., Marcellin, Michael W., Kostuk, Raymond, Goodman, Nathan
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
Typetext, Electronic Dissertation
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0018 seconds