Selective hydrogenation is an important class of chemical reactions for the production of speciality chemicals, pharmaceuticals and petrochemicals. The challenges in this type of reactions are to control selectivity in hydrogenation of poly-functional molecules, and avoid the possible risk of reaction runaway due to the high exothermisity. In this project the fundamentals of liquid-phase hydrogenation reactions in a structured compact multifunctional reactor were investigated. This technology represents an advance over the existing hydrogenation technologies because it exploits the effects of reduced characteristic paths of mass and heat transfer, attained in compact reactor architecture with mm-scale reaction channels and integrated static mixers and micro-heat exchangers. Catalysts based on mesoporous synthetic carbons were developed especially for preparing micro-packed beds in the compact reactor. The investigation resulted in fundamental information on reactor performance for selected model reactions, heat transfer efficiency of the integrated micro-heat exchangers, development of continuous tandem reaction, and evaluation of developed catalysts for hydrogenation and hydrodehalogenation reactions under the continuous flow conditions being used. The results demonstrate that the structured compact multifunctional reactor might be a promising technology to transfer conventional heterogeneous catalysis to flow regime.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:519009 |
Date | January 2010 |
Creators | Fan, Xiaolei |
Contributors | Plucinski, Pawel |
Publisher | University of Bath |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Page generated in 0.0108 seconds