Return to search

Optical Properties of In1-xGaxN Epilayers Grown by HPCVD

Optical absorption spectroscopy has been applied to study properties such as the fundamental absorption edge and defect absorption centers of group III-nitride compound semiconductor epilayers. The investigation in this thesis focused on analyzing the band gap of indium-rich In1-xGaxN epilayers, which where grown by the high-pressure chemical vapor deposition (HPCVD) technique. Our results - together with literature data for gallium-rich In1-xGaxN alloys indicate that the shift of the fundamental band gap of In1-xGaxN with composition x can be described with a bowing parameter of b = 2.2eV. Temperature dependent transmission measurements show that the band gap variation with temperature follows a S-shape behavior for small gallium concentration and shifts towards a Varshni type behavior for a higher gallium concentrations. The S-shape behavior is attributed to nanoscale compositional fluctuations/clustering in the ternary alloy system. The thicknesses of the measured In1-xGaxN epilayers have been analyzed through multilayer stack model calculations of the transmission spectra. The free electron concentration in the In1-xGaxN epilayers has been obtained from simulations of infrared reflectance spectra.

Identiferoai:union.ndltd.org:GEORGIA/oai:digitalarchive.gsu.edu:phy_astr_theses-1010
Date23 August 2010
CreatorsWang, Jielei, Ms
PublisherDigital Archive @ GSU
Source SetsGeorgia State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourcePhysics and Astronomy Theses

Page generated in 0.0016 seconds