Return to search

Performance Comparison of Multiple Imputation Methods for Quantitative Variables for Small and Large Data with Differing Variability

Missing data continues to be one of the main problems in data analysis as it reduces sample representativeness and consequently, causes biased estimates. Multiple imputation methods have been established as an effective method of handling missing data. In this study, we examined multiple imputation methods for quantitative variables on twelve data sets with varied sizes and variability that were pseudo generated from an original data. The multiple imputation methods examined are the predictive mean matching, Bayesian linear regression and linear regression, non-Bayesian in the MICE (Multiple Imputation Chain Equation) package in the statistical software, R. The parameter estimates generated from the linear regression on the imputed data were compared to the closest parameter estimates from the complete data across all twelve data sets.

Identiferoai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etd-5412
Date01 May 2021
CreatorsOnyame, Vincent
PublisherDigital Commons @ East Tennessee State University
Source SetsEast Tennessee State University
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations
RightsCopyright by the authors.

Page generated in 0.0023 seconds