Return to search

Performance Comparison of Imputation Methods for Mixed Data Missing at Random with Small and Large Sample Data Set with Different Variability

One of the concerns in the field of statistics is the presence of missing data, which leads to bias in parameter estimation and inaccurate results. However, the multiple imputation procedure is a remedy for handling missing data. This study looked at the best multiple imputation methods used to handle mixed variable datasets with different sample sizes and variability along with different levels of missingness. The study employed the predictive mean matching, classification and regression trees, and the random forest imputation methods. For each dataset, the multiple regression parameter estimates for the complete datasets were compared to the multiple regression parameter estimates found with the imputed dataset. The results showed that the random forest imputation method was the best for mostly a sample of 150 and 500 irrespective of the variability. The classification and regression tree imputation methods worked best mostly on sample of 30 irrespective of the variability.

Identiferoai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etd-5445
Date01 August 2021
CreatorsAfari, Kyei
PublisherDigital Commons @ East Tennessee State University
Source SetsEast Tennessee State University
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations
RightsCopyright by the authors.

Page generated in 0.0124 seconds