Return to search

Statistical methods to account for different sources of bias in Genome-Wide association studies / Méthodes statistiques pour la prise en compte de différentes sources de biais dans les études d'association à grande échelle

Les études d'association à grande échelle sont devenus un outil très performant pour détecter les variants génétiques associés aux maladies. Ce manuscrit de doctorat s'intéresse à plusieurs des aspects clés des nouvelles problématiques informatiques et statistiques qui ont émergé grâce à de telles recherches. Les résultats des études d'association à grande échelle sont critiqués, en partie, à cause du biais induit par la stratification des populations. Nous proposons une étude de comparaison des stratégies qui existent pour prendre en compte ce problème. Leurs avantages et limites sont discutés en s'appuyant sur divers scénarios de structure des populations dans le but de proposer des conseils et indications pratiques. Nous nous intéressons ensuite à l'interférence de la structure des populations dans la recherche génétique. Nous avons développé au cours de cette thèse un nouvel algorithme appelé SHIPS (Spectral Hierarchical clustering for the Inference of Population Structure). Cet algorithme a été appliqué à un ensemble de jeux de données simulés et réels, ainsi que de nombreux autres algorithmes utilisés en pratique à titre de comparaison. Enfin, la question du test multiple dans ces études d'association est abordée à plusieurs niveaux. Nous proposons une présentation générale des méthodes de tests multiples et discutons leur validité pour différents designs d'études. Nous nous concertons ensuite sur l'obtention de résultats interprétables aux niveaux de gènes, ce qui correspond à une problématique de tests multiples avec des tests dépendants. Nous discutons et analysons les différentes approches dédiées à cette fin. / Genome-Wide association studies have become powerful tools to detect genetic variants associated with diseases. This PhD thesis focuses on several key aspects of the new computational and methodological problematics that have arisen with such research. The results of Genome-Wide association studies have been questioned, in part because of the bias induced by population stratification. Many stratégies are available to account for population stratification scenarios are highlighted in order to propose pratical guidelines to account for population stratification. We then focus on the inference of population structure that has many applications for genetic research. We have developed and present in this manuscript a new clustering algoritm called Spectral Hierarchical clustering for the Inference of Population Structure (SHIPS). This algorithm in the field to propose a comparison of their performances. Finally, the issue of multiple-testing in Genome-Wide association studies is discussed on several levels. We propose a review of the multiple-testing corrections and discuss their validity for different study settings. We then focus on deriving gene-wise interpretation of the findings that corresponds to multiple-stategy to obtain valid gene-disease association measures.

Identiferoai:union.ndltd.org:theses.fr/2012EVRY0023
Date22 November 2012
CreatorsBouaziz, Matthieu
ContributorsEvry-Val d'Essonne, Ambroise, Christophe, Guedj, Mickaël
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text, Image, StillImage

Page generated in 0.002 seconds