We deal with locally ill-posed nonlinear operator equations F(x) = y in L^2(0,1),
where the Fréchet derivatives A = F'(x_0) of the nonlinear forward operator F are
compact linear integral operators A = M ◦ J with a multiplication operator M
with integrable multiplier function m and with the simple integration operator J.
In particular, we give examples of nonlinear inverse problems in natural sciences
and stochastic finance that can be written in such a form with linearizations that
contain multiplication operators. Moreover, we consider the corresponding ill-posed
linear operator equations Ax = y and their degree of ill-posedness. In particular,
we discuss the fact that the noncompact multiplication operator M has only a
restricted influence on this degree of ill-posedness even if m has essential zeros of
various order.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:18375 |
Date | 07 October 2005 |
Creators | Hofmann, Bernd |
Publisher | Technische Universität Chemnitz |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:lecture, info:eu-repo/semantics/lecture, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Relation | urn:nbn:de:swb:ch1-200501214, qucosa:18370 |
Page generated in 0.0022 seconds