One of the important factors to be considered in designing an engineering system is uncertainty, which emanates from natural randomness, limited data, or limited knowledge of systems. In this study, a robust design methodology is established in order to design multifunctional materials, employing multi-time and length scale analyses. The Robust Concept Exploration Method with Error Margin Index (RCEM-EMI) is proposed for design incorporating non-deterministic system behavior. The Inductive Design Exploration Method (IDEM) is proposed to facilitate distributed, robust decision-making under propagated uncertainty in a series of multiscale analyses or simulations. These methods are verified in the context of Design of Multifunctional Energetic Structural Materials (MESM). The MESM is being developed to replace the large amount of steel reinforcement in a missile penetrator for light weight, high energy release, and sound structural integrity. In this example, the methods facilitate following state-of-the-art design capabilities, robust MESM design under (a) random microstructure changes and (b) propagated uncertainty in a multiscale analysis chain. The methods are designed to facilitate effective and efficient materials design; however, they are generalized to be applicable to any complex engineering systems design that incorporates computationally intensive simulations or expensive experiments, non-deterministic models, accumulated uncertainty in multidisciplinary analyses, and distributed, collaborative decision-making.
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/7508 |
Date | 04 November 2005 |
Creators | Choi, Hae-Jin |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Language | en_US |
Detected Language | English |
Type | Dissertation |
Format | 7588259 bytes, application/pdf |
Page generated in 0.0021 seconds