Return to search

2D and 3D high-speed multispectral optical imaging systems for in-vivo biomedical research

Functional optical imaging encompasses the use of optical imaging techniques to study living biological systems in their native environments. Optical imaging techniques are well-suited for functional imaging because they are minimally-invasive, use non ionizing radiation, and derive contrast from a wide range of biological molecules. Modern transgenic labeling techniques, active and inactive exogenous agents, and intrinsic sources of contrast provide specific and dynamic markers of in-vivo processes at subcellular resolution. A central challenge in building functional optical imaging systems is to acquire data at high enough spatial and temporal resolutions to be able to resolve the in-vivo process(es) under study. This challenge is particularly highlighted within neuroscience where considerable effort in the field has focused on studying the structural and functional relationships within complete neurovascular units in the living brain. Many existing functional optical techniques are limited in meeting this challenge by their imaging geometries, light source(s), and/or hardware implementations. In this thesis we describe the design, construction, and application of novel 2D and 3D optical imaging systems to address this central challenge with a specific focus on functional neuroimaging applications. The 2D system is an ultra-fast, multispectral, wide-field imaging system capable of imaging 7.5 times faster than existing technologies. Its camera-first design allows for the fastest possible image acquisition rates because it is not limited by synchronization challenges that have hindered previous multispectral systems. We present the development of this system from a bench top instrument to a portable, low-cost, modular, open source, laptop based instrument. The constructed systems can acquire multispectral images at >75 frames per second with image resolutions up to 512 x 512 pixels. This increased speed means that spectral analysis more accurately reflects the instantaneous state of tissues and allows for significantly improved tracking of moving objects. We describe 3 quantitative applications of these systems to in-vivo research and clinical studies of cortical imaging and calcium signaling in stem cells. The design and source code of the portable system was released to the greater scientific community to help make high-speed, multispectral imaging more accessible to a larger number of dynamic imaging applications, and to foster further development of the software package. The second system we developed is an entirely new, high-speed, 3D fluorescence microscopy platform called Laser-Scanning Intersecting Plane Tomography (L-SIPT). L-SIPT uses a novel combination of light-sheet illumination and off-axis detection to provide en-face 3D imaging of samples. L-SIPT allows samples to move freely in their native environments, enabling a range of experiments not possible with previous 3D optical imaging techniques. The constructed system is capable of acquiring 3D images at rates >20 volumes per second (VPS) with volume resolutions of 1400 x 50 x 150 pixels, over a 200 fold increase over conventional laser scanning microscopes. Spatial resolution is set by choice of telescope design. We developed custom opto-mechanical components, computer raytracing models to guide system design and to characterize the technique's fundamental resolution limits, and phantoms and biological samples to refine the system's performance capabilities. We describe initial applications development of the system to image freely moving, transgenic Drosophila Melanogaster larvae, 3D calcium signaling and hemodynamics in transgenic and exogenously labeled rodent cortex in-vivo, and 3D calcium signaling in acute transgenic rodent cortical brain slices in-vitro.

Identiferoai:union.ndltd.org:columbia.edu/oai:academiccommons.columbia.edu:10.7916/D8D798G5
Date January 2014
CreatorsBouchard, Matthew Bryan
Source SetsColumbia University
LanguageEnglish
Detected LanguageEnglish
TypeTheses

Page generated in 0.0147 seconds