Return to search

Multistable valve technology with magnetic shape memory alloy as passive element activated by a bidirectional solenoid actuator

Magnetic Shape Memory (MSM) alloys show a superelastic behaviour with possible deformation rates up to 6% until 12% and a sufficient lifetime performance [1, 2]. In this paper, a passive application for a superelastic Ni-Mn-Ga-alloy is presented by using the MSM element as an accurately defined inner friction in a system of a multistable actuator, in particular a multistable proportional valve. The multistable valve is characterized by a currentless holding of the valve displacement in any position of the stroke. This circumstance makes the concept a very low energy consumption valve, compared to conventional proportional valves with solenoid actuators. The new aspect of a rigid connection of MSM Materials enables an absorption of tension as well as compressive forces. To realize an applicable controlling valve, a simple and effective controlling strategy has been implemented. Due to the stabilizing effect of the MSM element, an accurate controlling of the valve stroke and the usage for example as a pressure-, mass-flow or temperature-controlling valve was made possible. Furthermore, some potential applications in pneumatics as well as in hydraulics are presented.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:71264
Date26 June 2020
CreatorsHappel, Julius, Schnetzler, René, Laufenberg, Markus
ContributorsDresdner Verein zur Förderung der Fluidtechnik e. V. Dresden
PublisherTechnische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:conferenceObject, info:eu-repo/semantics/conferenceObject, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess
Relation10.25368/2020.8, urn:nbn:de:bsz:14-qucosa2-709188, qucosa:70918

Page generated in 0.0019 seconds