This study addresses the challenge of identifying anomalies within multivariate time series data, focusing specifically on the operational parameters of gas turbine combustion systems. In search of an effective detection method, the research explores the application of three distinct machine learning methods: the Long Short-Term Memory (LSTM) autoencoder, the Self-Organizing Map (SOM), and the Density-Based Spatial Clustering of Applications with Noise (DBSCAN). Through the experiment, these models are evaluated to determine their efficacy in anomaly detection. The findings show that the LSTM autoencoder not only surpasses its counterparts in performance metrics but also shows a unique capability to identify the underlying causes of detected anomalies. This paper delves into the comparative analysis of these techniques and discusses the implications of the models in maintaining the reliability and safety of gas turbine operations.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:umu-227611 |
Date | January 2024 |
Creators | Mshaleh, Mohammad |
Publisher | Umeå universitet, Institutionen för datavetenskap |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | UMNAD ; 1505 |
Page generated in 0.0016 seconds