Return to search

Avaliação da habilidade preditiva entre modelos Garch multivariados : uma análise baseada no critério Model Confidence Set

Esta dissertação analisa a questão da seleção de modelos GARCH multivariados em termos da perfomance de previsão da matriz de covariância condicional. A aplicação empírica é realizada com 7 retornos de índices de ações envolvendo um conjunto de 34 especificações de modelos para os quais computamos as previsões da variância condicional um passo a frente para uma amostra com 60 observações para cada especificação dos modelos GARCH multivariados. A comparação entre os modelos é baseada no procedimento Model Confidence Set (MCS) avaliado através de duas funções perdas robustas a proxies de volatilidade imperfeitas. O MCS é um procedimento que permite comparar vários modelos simultaneamente em termos de sua habilidade preditiva e determinar um conjunto de modelos estatisticamente semelhantes em termos de previsão, dado um nível de confiança. / This paper considers the question of the selection of multivariate GARCH models in terms of covariance matrix forecasting. In the empirical application we consider 7 series of returns and compare a set of 34 model specifications based on one-step-ahead conditional variance forecasts over a sample with 60 observations. The comparison between models is performed with the Model Confidence Set (MCS) procedure evaluated using two loss functions that are robust against imperfect volatility proxies. The MCS is a procedure that allows both a multiple model comparison in terms of forecasting accuracy and the determination of a model set composed of statistically equivalent models, under a confidence level.

Identiferoai:union.ndltd.org:IBICT/oai:www.lume.ufrgs.br:10183/70011
Date January 2012
CreatorsBorges, Bruna Kasprzak
ContributorsZiegelmann, Flavio Augusto
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0088 seconds