Cyclones are complex weather phenomena, affected by multiple variables such as pressure, wind, temperature and more. Therefore, how cyclones are formed, what affects them and how they can be tracked is still actively researched today. Cyclones can have multiple centers (eyes), which can split and merge during its lifetime, which make them even more complex to define mathematically. In this thesis, how multi-center cyclones can be meaningfully visualized for domain scientists using multivariate visualization is investigated. An important aspect of the visualization is how a cyclones spread and boundary can be defined. The result is a visualization where the cyclonic region is defined by segmenting a pressure volume, and then a surface is extracted to get the cyclones boundary. Temperature is visualized using color mapping onto surfaces, while the wind velocity is shown using particles. The framework allows domain scientists to affect the visualization by picking criteria for segmenting the volume, color maps, and more. In conclusion, an improved cyclonic region could be defined by using multiple fields instead of only pressure, and the visualization would be improved with a greater detail put into the wind part. / <p>Examensarbetet är utfört vid Institutionen för teknik och naturvetenskap (ITN) vid Tekniska högskolan, Linköpings universitet</p>
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-173575 |
Date | January 2020 |
Creators | Nilsson, Emma |
Publisher | Linköpings universitet, Medie- och Informationsteknik, Linköpings universitet, Tekniska fakulteten |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0016 seconds