Return to search

Learning a Multiview Weighted Majority Vote Classifier : Using PAC-Bayesian Theory and Boosting / Apprentissage de vote de majorité pour la classification multivue : Utilisation de la théorie PAC-Bayésienne et du boosting

La génération massive de données, nous avons de plus en plus de données issues de différentes sources d’informations ayant des propriétés hétérogènes. Il est donc important de prendre en compte ces représentations ou vues des données. Ce problème d'apprentissage automatique est appelé apprentissage multivue. Il est utile dans de nombreux domaines d’applications, par exemple en imagerie médicale, nous pouvons représenter le cerveau humains via des IRM, t-fMRI, EEG, etc. Dans cette cette thèse, nous nous concentrons sur l’apprentissage multivue supervisé, où l’apprentissage multivue est une combinaison de différents modèles de classifications ou de vues. Par conséquent, selon notre point de vue, il est intéressant d’aborder la question de l’apprentissage à vues multiples dans le cadre PAC-Bayésien. C’est un outil issu de la théorie de l’apprentissage statistique étudiant les modèles s’exprimant comme des votes de majorité. Un des avantages est qu’elle permet de prendre en considération le compromis entre précision et diversité des votants, au cœur des problématiques liées à l’apprentissage multivue. La première contribution de cette thèse étend la théorie PAC-Bayésienne classique (avec une seule vue) à l’apprentissage multivue (avec au moins deux vues). Pour ce faire, nous définissons une hiérarchie de votants à deux niveaux: les classifieurs spécifiques à la vue et les vues elles-mêmes. Sur la base de cette stratégie, nous avons dérivé des bornes en généralisation PAC-Bayésiennes (probabilistes et non-probabilistes) pour l’apprentissage multivue. D'un point de vue pratique, nous avons conçu deux algorithmes d'apprentissage multivues basés sur notre stratégie PAC-Bayésienne à deux niveaux. Le premier algorithme appelé PB-MVBoost est un algorithme itératif qui apprend les poids sur les vues en contrôlant le compromis entre la précision et la diversité des vues. Le second est une approche de fusion tardive où les prédictions des classifieurs spécifiques aux vues sont combinées via l’algorithme PAC-Bayésien CqBoost proposé par Roy et al. Enfin, nous montrons que la minimisation des erreurs pour le vote de majorité multivue est équivalente à la minimisation de divergences de Bregman. De ce constat, nous proposons un algorithme appelé MωMvC2 pour apprendre un vote de majorité multivue. / With tremendous generation of data, we have data collected from different information sources having heterogeneous properties, thus it is important to consider these representations or views of the data. This problem of machine learning is referred as multiview learning. It has many applications for e.g. in medical imaging, we can represent human brain with different set of features for example MRI, t-fMRI, EEG, etc. In this thesis, we focus on supervised multiview learning, where we see multiview learning as combination of different view-specific classifiers or views. Therefore, according to our point of view, it is interesting to tackle multiview learning issue through PAC-Bayesian framework. It is a tool derived from statistical learning theory studying models expressed as majority votes. One of the advantages of PAC-Bayesian theory is that it allows to directly capture the trade-off between accuracy and diversity between voters, which is important for multiview learning. The first contribution of this thesis is extending the classical PAC-Bayesian theory (with a single view) to multiview learning (with more than two views). To do this, we considered a two-level hierarchy of distributions over the view-specific voters and the views. Based on this strategy, we derived PAC-Bayesian generalization bounds (both probabilistic and expected risk bounds) for multiview learning. From practical point of view, we designed two multiview learning algorithms based on our two-level PAC-Bayesian strategy. The first algorithm is a one-step boosting based multiview learning algorithm called as PB-MVBoost. It iteratively learns the weights over the views by optimizing the multiview C-Bound which controls the trade-off between the accuracy and the diversity between the views. The second algorithm is based on late fusion approach where we combine the predictions of view-specific classifiers using the PAC-Bayesian algorithm CqBoost proposed by Roy et al. Finally, we show that minimization of classification error for multiview weighted majority vote is equivalent to the minimization of Bregman divergences. This allowed us to derive a parallel update optimization algorithm (referred as MωMvC2) to learn our multiview weighted majority vote.

Identiferoai:union.ndltd.org:theses.fr/2018LYSES037
Date23 October 2018
CreatorsGoyal, Anil
ContributorsLyon, Amini, Massih-Reza
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.002 seconds