Return to search

Ενίσχυση σημάτων μουσικής υπό το περιβάλλον θορύβου

Στην παρούσα εργασία επιχειρείται η εφαρμογή αλγορίθμων αποθορυβοποίησης σε σήματα
μουσικής και η εξαγωγή συμπερασμάτων σχετικά με την απόδοση αυτών ανά μουσικό είδος. Η
κύρια επιδίωξη είναι να αποσαφηνιστούν τα βασικά προβλήματα της ενίσχυσης ήχων και να
παρουσιαστούν οι διάφοροι αλγόριθμοι που έχουν αναπτυχθεί για την επίλυση των προβλημάτων αυτών. Αρχικά γίνεται μία σύντομη εισαγωγή στις βασικές έννοιες πάνω στις οποίες δομείται η τεχνολογία ενίσχυσης ομιλίας. Στην συνέχεια εξετάζονται και αναλύονται αντιπροσωπευτικοί
αλγόριθμοι από κάθε κατηγορία τεχνικών αποθορυβοποίησης, την κατηγορία φασματικής
αφαίρεσης, την κατηγορία στατιστικών μοντέλων και αυτήν του υποχώρου. Για να μπορέσουμε να
αξιολογήσουμε την απόδοση των παραπάνω αλγορίθμων χρησιμοποιούμε αντικειμενικές μετρήσεις
ποιότητας, τα αποτελέσματα των οποίων μας δίνουν την δυνατότητα να συγκρίνουμε την απόδοση
του κάθε αλγορίθμου. Με την χρήση τεσσάρων διαφορετικών μεθόδων αντικειμενικών μετρήσεων
διεξάγουμε τα πειράματα εξάγοντας μια σειρά ενδεικτικών τιμών που μας δίνουν την ευχέρεια να
συγκρίνουμε είτε τυχόν διαφοροποιήσεις στην απόδοση των αλγορίθμων της ίδιας κατηγορίας είτε
διαφοροποιήσεις στο σύνολο των αλγορίθμων. Από την σύγκριση αυτή γίνεται εξαγωγή χρήσιμων
συμπερασμάτων σχετικά με τον προσδιορισμό των παραμέτρων κάθε αλγορίθμου αλλά και με την καταλληλότητα του κάθε αλγορίθμου για συγκεκριμένες συνθήκες θορύβου και για συγκεκριμένο μουσικό είδος. / This thesis attempts to apply Noise Reduction algorithms to signals of music and draw conclusions concerning the performance of each algorithm for every musical genre. The main aims are to clarify the basic problems of sound enhancement and present the various algorithms
developed for solving these problems. After a brief introduction to basic concepts on sound enhancement we examine and analyze various algorithms that have been proposed at times in the literature for speech enhancement. These algorithms can be divided into three main classes: spectral
subtractive algorithms, statistical-model-based algorithms and subspace algorithms. In order to
evaluate the performance of the above algorithms we use objective measures of quality, the results of which give us the opportunity to compare the performance of each algorithm. By using four different methods of objective measures to conduct the experiments we draw a set of values that
facilitate us to make within-class algorithm comparisons and across-class algorithm comparisons. From these comparisons we can draw conclusions on the determination of parameters for each algorithm and the appropriateness of algorithms for specific noise conditions and music genre.

Identiferoai:union.ndltd.org:upatras.gr/oai:nemertes:10889/3833
Date20 October 2010
CreatorsΠαπανικολάου, Παναγιώτης
ContributorsΦακωτάκης, Νικόλαος, Φακωτάκης, Νικόλαος, Δερματάς, Ευάγγελος
Source SetsUniversity of Patras
Languagegr
Detected LanguageGreek
TypeThesis
Rights0

Page generated in 0.0029 seconds