With the ever growing media and music catalogs, tools that search and navigate this data are important. For more complex search queries, meta-data is needed, but to manually label the vast amounts of new content is impossible. In this thesis, automatic labeling of musical instrument activities in song mixes is investigated, with a focus on ways to alleviate the lack of annotated data for instrument activity detection models. Two methods for alleviating the problem of small amounts of data are proposed and evaluated. Firstly, a self-supervised approach based on automatic labeling and mixing of randomized instrument stems is investigated. Secondly, a domain-adaptation approach that trains models on sampled MIDI files for instrument activity detection on recorded music is explored. The self-supervised approach yields better results compared to the baseline and points to the fact that deep learning models can learn instrument activity detection without an intrinsic musical structure in the audio mix. The domain-adaptation models trained solely on sampled MIDI files performed worse than the baseline, however using MIDI data in conjunction with recorded music boosted the performance. A hybrid model combining both self-supervised learning and domain adaptation by using both sampled MIDI data and recorded music produced the best results overall. / I och med de ständigt växande media- och musikkatalogerna krävs verktyg för att söka och navigera i dessa. För mer komplexa sökförfrågningar så behövs det metadata, men att manuellt annotera de enorma mängderna av ny data är omöjligt. I denna uppsats undersöks automatisk annotering utav instrumentsaktivitet inom musik, med ett fokus på bristen av annoterad data för modellerna för instrumentaktivitetsigenkänning. Två metoder för att komma runt bristen på data föreslås och undersöks. Den första metoden bygger på självövervakad inlärning baserad på automatisk annotering och slumpartad mixning av olika instrumentspår. Den andra metoden använder domänadaption genom att träna modeller på samplade MIDI-filer för detektering av instrument i inspelad musik. Metoden med självövervakning gav bättre resultat än baseline och pekar på att djupinlärningsmodeller kan lära sig instrumentigenkänning trots att ljudmixarna saknar musikalisk struktur. Domänadaptionsmodellerna som endast var tränade på samplad MIDI-data presterade sämre än baseline, men att använda MIDI-data tillsammans med data från inspelad musik gav förbättrade resultat. En hybridmodell som kombinerade både självövervakad inlärning och domänadaption genom att använda både samplad MIDI-data och inspelad musik gav de bästa resultaten totalt.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-280810 |
Date | January 2020 |
Creators | Nyströmer, Carl |
Publisher | KTH, Skolan för elektroteknik och datavetenskap (EECS) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-EECS-EX ; 2020:467 |
Page generated in 0.0075 seconds