The remediation of persistent chlorinated aromatic compounds has become a priority of great relevance due to the teratogenic, carcinogenic and endocrine-disrupting properties of these xenobiotics. The use of biological methodologies for the clean-up of contaminated sites, collectively referred to as "bioremediation", has been gaining an increasing interest in recent years because it represents an effective, cost-competitive and environmentally friendly alternative to the physico-chemical and thermal treatments. In this respect, "white rot" fungi, an ecological subgroup of filamentous fungi, display features that make them excellent candidates to design an effective remediation technology ("mycoremediation"). In spite of this, fungi have not been widely exploited for their metabolic capabilities and the mechanism by which they are able to degrade the aforementioned pollutants has not been fully elucidated yet. Within this frame, the present Ph.D thesis was aimed at: i) assessing the efficiency of different mycoremediation strategies for the clean-up of a polychlorinated biphenyl (PCBs)-contaminated soil; ii) understanding the fungal degradation pathways of polychlorinated biphenyls and their major metabolites, namely chlorobenzoic acids (CBAs) and hydroxylated polychlorinated biphenyls (OH-PCBs). i)...
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:332295 |
Date | January 2014 |
Creators | Stella, Tatiana |
Contributors | Cajthaml, Tomáš, Mihaljevič, Martin, Tesařová, Eva |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0138 seconds