Return to search

Arbuscular mycorrhizal fungi enhance tolerance to bicarbonate in Rosa multiflora cv. burr

High bicarbonate (HCO3-) content and associated high pH of irrigation water is detrimental to plant growth. Sustain ableagricultural/horticultural production will increasingly have to rely on economically feasible and environmentally sound solutions to the problems associated with high levels of HCO3- in irrigation water. The ability of a mixed Glomus Tulasne & Tulasne species inoculum of arbuscular mycorrhizal fungi (AMF), Glomus ZAC-19 (containing Glomus albidum Walker & Rhodes, Glomus claroideum Schenck & Smith, and Glomus diaphanum Morton & Walker), to enhance plant tolerance to HCO3- was tested on the growth and nutrient uptake of Rosa multiflora Thunb. ex J. Murr. cv. Burr (rose). Arbuscular mycorrhizal colonized and non-inoculated (non-AMF) R. multiflora cv. Burr were treated with 0, 2.5, 5, and 10 mM HCO3-. Increasing HCO3- concentration and associated high pH reduced R. multiflora cv. Burr growth, nutrient uptake, and acid phosphatase activity (ACP), while increasing alkaline phosphatase activity (ALP). Inoculation with AMF enhanced plant tolerance to HCO3- as indicated by greater growth, nutrient uptake, leaf chlorophyll content, higher mycorrhizal inoculation effect (MIE), lower root iron reductase activity, and generally lower soluble and wall-bound ALP activity. While AMF colonization (arbuscules, vesicles, and hyphae formation) was reduced by increasing HCO3- concentration, colonization still occurred at high HCO3- concentration. At 2.5 mM HCO3-, AMF plant growth was comparable to plants at 0 mM HCO3-, further indicating the beneficial effect of AMF for alleviation of HCO3- plant stress.

Identiferoai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/2661
Date01 November 2005
CreatorsCartmill, Andrew David
ContributorsDavies, Frederick, Jr.
PublisherTexas A&M University
Source SetsTexas A and M University
Languageen_US
Detected LanguageEnglish
TypeBook, Thesis, Electronic Thesis, text
Format829049 bytes, electronic, application/pdf, born digital

Page generated in 0.0015 seconds