Return to search

Exposure of earth moving equipment operators to vibration and noise at an opencast coal mine / Mandi Groenewald

The phrase “miner” is comparatively non-specific as mining is seen as a multi-disciplinary industry that includes several diverse professions and trades (Donoghue, 2004). One of the functions within mining is the operation of earth moving equipment (EME) such as haul trucks, dozers, excavators and graders. EME are generally used to shift large amounts of earth, dig foundations and landscape areas.
In this study whole-body vibration (WBV) and noise exposure of earth moving equipment (EME) operators were assessed, at an opencast coalmine in South Africa. The aim was to evaluate and quantify the levels of exposure in different EME types, as well as to compare old with new EME, in order to estimate if machine hours contribute to higher noise and vibration levels. WBV and noise levels of the Production and Rehabilitation operations were compared, to determine whether different activities led to different exposures.
Internationally accepted standardised methods, ISO 2631-1 for WBV and SANS 10083:2012 for noise were followed and correctly calibrated instrumentation was used. WBV measurements were conducted with a tri-axial seat pad accelerometer (SVAN 958) and personal noise dosimeters (Casella 35 X) were used for noise measurements. Measurements were taken over a period of four months.
With regards to the European Union (EU) limit (1.15 m/s2) and the EU action limit (0.5 m/s2) it was noted that operators of EME within the Production operation were not exposed to WBV levels above the EU limit, but 77% of these operators were exposed to WBV levels above the EU action limit. It was also evident that 45% of operators’ vibration exposure levels were within the Health Guidance Caution Zone (HGCZ) of 0.45 – 0.90 m/s2. Within the Rehabilitation operation, 9% of operators were exposed to WBV levels above the EU limit and 55% above the EU action limit. Furthermore 50% was within the HGCZ. With regards to the noise Occupational exposure limit (OEL) of 85 dB(A) as stated by the Mine Health and Safety Regulations (MHSR) it was noted that 27% of operators within the Production operation were exposed to noise levels above the limit and for operators within the Rehabilitation operation 14% were reported to be exposed at or above the limit. Statistically significant difference in noise exposure was found between the Production operation and Rehabilitation operation. Results indicated that the majority of EME operators were exposed to high noise levels, in some cases exceeding the 85 dB(A) OEL. A significant positive correlation was found between noise exposure levels and machine hours. Thus higher noise levels were observed as machine operating hours increased.
It was found that operators were exposed predominantly to vibration and noise levels below the limits. However the Dozer group within the Production and Rehabilitation operations in some cases exceeded the vibration and noise legal limit. High exposure levels within the Dozer group can be attributed to the fact that these EME types mostly perform activities in uneven areas and the tracks on which these Dozers move also contribute to higher vibration levels due to a lack of a suspension. Controls should be implemented as far as is reasonably practicable to ensure that operators are not exposed above recommended or permissible levels for each hazard. Continuous improvement of the maintenance plan for all EME and regularly grading and maintaining travelling ways are some of the controls that will contribute to lower vibration and noise levels. Operators exposed to high noise levels should use hearing protective devices as an early on preventative measure to reduce noise exposure levels. / MSc (Occupational Hygiene), North-West University, Potchefstroom Campus, 2014

Identiferoai:union.ndltd.org:NWUBOLOKA1/oai:dspace.nwu.ac.za:10394/11030
Date January 2013
CreatorsGroenewald, Mandi
Source SetsNorth-West University
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0022 seconds