Return to search

DS-Fake : a data stream mining approach for fake news detection

L’avènement d’internet suivi des réseaux sociaux a permis un accès facile et une diffusion rapide de l’information par toute personne disposant d’une connexion internet. L’une des conséquences néfastes de cela est la propagation de fausses informations appelées «fake news». Les fake news représentent aujourd’hui un enjeu majeur au regard de ces conséquences. De nombreuses personnes affirment encore aujourd’hui que sans la diffusion massive de fake news sur Hillary Clinton lors de la campagne présidentielle de 2016, Donald Trump n’aurait peut-être pas été le vainqueur de cette élection. Le sujet de ce mémoire concerne donc la détection automatique des fake news.

De nos jours, il existe un grand nombre de travaux à ce sujet. La majorité des approches présentées se basent soit sur l’exploitation du contenu du texte d’entrée, soit sur le contexte social du texte ou encore sur un mélange entre ces deux types d’approches. Néanmoins, il existe très peu d’outils ou de systèmes efficaces qui détecte une fausse information dans la vie réelle, tout en incluant l’évolution de l’information au cours du temps. De plus, il y a un manque criant de systèmes conçues dans le but d’aider les utilisateurs des réseaux sociaux à adopter un comportement qui leur permettrait de détecter les fausses nouvelles.

Afin d’atténuer ce problème, nous proposons un système appelé DS-Fake. À notre connaissance, ce système est le premier à inclure l’exploration de flux de données. Un flux de données est une séquence infinie et dénombrable d’éléments et est utilisée pour représenter des données rendues disponibles au fil du temps. DS-Fake explore à la fois l’entrée et le contenu d’un flux de données. L’entrée est une publication sur Twitter donnée au système afin qu’il puisse déterminer si le tweet est digne de confiance. Le flux de données est extrait à l’aide de techniques d’extraction du contenu de sites Web. Le contenu reçu par ce flux est lié à l’entrée en termes de sujets ou d’entités nommées mentionnées dans le texte d’entrée. DS-Fake aide également les utilisateurs à développer de bons réflexes face à toute information qui se propage sur les réseaux sociaux.

DS-Fake attribue un score de crédibilité aux utilisateurs des réseaux sociaux. Ce score décrit la probabilité qu’un utilisateur puisse publier de fausses informations. La plupart des systèmes utilisent des caractéristiques comme le nombre de followers, la localisation, l’emploi, etc. Seuls quelques systèmes utilisent l’historique des publications précédentes d’un utilisateur afin d’attribuer un score. Pour déterminer ce score, la majorité des systèmes utilisent la moyenne. DS-Fake renvoie un pourcentage de confiance qui détermine la probabilité que l’entrée soit fiable. Contrairement au petit nombre de systèmes qui utilisent l’historique des publications en ne prenant pas en compte que les tweets précédents d’un utilisateur, DS-Fake calcule le score de crédibilité sur la base des tweets précédents de tous les utilisateurs. Nous avons renommé le score de crédibilité par score de légitimité. Ce dernier est basé sur la technique de la moyenne Bayésienne. Cette façon de calculer le score permet d’atténuer l’impact des résultats des publications précédentes en fonction du nombre de publications dans l’historique. Un utilisateur donné ayant un plus grand nombre de tweets dans son historique qu’un autre utilisateur, même si les tweets des deux sont tous vrais, le premier utilisateur est plus crédible que le second. Son score de légitimité sera donc plus élevé. À notre connaissance, ce travail est le premier qui utilise la moyenne Bayésienne basée sur l’historique de tweets de toutes les sources pour attribuer un score à chaque source.

De plus, les modules de DS-Fake ont la capacité d’encapsuler le résultat de deux tâches, à savoir la similarité de texte et l’inférence en langage naturel hl(en anglais Natural Language Inference). Ce type de modèle qui combine ces deux tâches de TAL est également nouveau pour la problématique de la détection des fake news. DS-Fake surpasse en termes de performance toutes les approches de l’état de l’art qui ont utilisé FakeNewsNet et qui se sont basées sur diverses métriques.

Il y a très peu d’ensembles de données complets avec une variété d’attributs, ce qui constitue un des défis de la recherche sur les fausses nouvelles. Shu et al. ont introduit en 2018 l’ensemble de données FakeNewsNet pour résoudre ce problème. Le score de légitimité et les tweets récupérés ajoutent des attributs à l’ensemble de données FakeNewsNet. / The advent of the internet, followed by online social networks, has allowed easy access and rapid propagation of information by anyone with an internet connection. One of the harmful consequences of this is the spread of false information, which is well-known by the term "fake news". Fake news represent a major challenge due to their consequences. Some people still affirm that without the massive spread of fake news about Hillary Clinton during the 2016 presidential campaign, Donald Trump would not have been the winner of the 2016 United States presidential election. The subject of this thesis concerns the automatic detection of fake news.

Nowadays, there is a lot of research on this subject. The vast majority of the approaches presented in these works are based either on the exploitation of the input text content or the social context of the text or even on a mixture of these two types of approaches. Nevertheless, there are only a few practical tools or systems that detect false information in real life, and that includes the evolution of information over time. Moreover, no system yet offers an explanation to help social network users adopt a behaviour that will allow them to detect fake news.

In order to mitigate this problem, we propose a system called DS-Fake. To the best of our knowledge, this system is the first to include data stream mining. A data stream is a sequence of elements used to represent data elements over time. This system explores both the input and the contents of a data stream. The input is a post on Twitter given to the system that determines if the tweet can be trusted. The data stream is extracted using web scraping techniques. The content received by this flow is related to the input in terms of topics or named entities mentioned in the input text. This system also helps users develop good reflexes when faced with any information that spreads on social networks.

DS-Fake assigns a credibility score to users of social networks. This score describes how likely a user can publish false information. Most of the systems use features like the number of followers, the localization, the job title, etc. Only a few systems use the history of a user’s previous publications to assign a score. To determine this score, most systems use the average. DS-Fake returns a percentage of confidence that determines how likely the input is reliable. Unlike the small number of systems that use the publication history by taking into account only the previous tweets of a user, DS-Fake calculates the credibility score based on the previous tweets of all users. We renamed the credibility score legitimacy score. The latter is based on the Bayesian averaging technique. This way of calculating the score allows attenuating the impact of the results from previous posts according to the number of posts in the history. A user who has more tweets in his history than another user, even if the tweets of both are all true, the first user is more credible than the second. His legitimacy score will therefore be higher. To our knowledge, this work is the first that uses the Bayesian average based on the post history of all sources to assign a score to each source.

DS-Fake modules have the ability to encapsulate the output of two tasks, namely text similarity and natural language inference. This type of model that combines these two NLP tasks is also new for the problem of fake news detection.

There are very few complete datasets with a variety of attributes, which is one of the challenges of fake news research. Shu et al. introduce in 2018 the FakeNewsNet dataset to tackle this issue. Our work uses and enriches this dataset. The legitimacy score and the retrieved tweets from named entities mentioned in the input texts add features to the FakeNewsNet dataset. DS-Fake outperforms all state-of-the-art approaches that have used FakeNewsNet and that are based on various metrics.

Identiferoai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/27488
Date08 1900
CreatorsMputu Boleilanga, Henri-Cedric
ContributorsAïmeur, Esma
Source SetsUniversité de Montréal
LanguageEnglish
Detected LanguageFrench
Typethesis, thèse
Formatapplication/pdf

Page generated in 0.0032 seconds